Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Круг № 1: «О случайном не может быть знания через доказательство», или почему теория вероятностей не возникла вплоть до XVII в.
В историко-математической литературе является общепринятым связывать возникновение теории вероятностей как науки со второй половиной XVII века. При этом считается, что исходным пунктом развития теории послужила переписка между двумя выдающимися математиками Нового времени Ферма и Паскалем. Эта переписка относится к 1654 г. и содержит главным образом решение задач на разделение ставки, связанных с рядом азартных игр. В письмах, впервые опубликованных в Тулузе в 1697 г., как Паскаль, так и Ферма неявным образом пользовались такими фундаментальными теоретико-вероятностными представлениями, как зависимость и независимость событий, теоремами сложения и умножения вероятностей (не определяя еще самого понятия «вероятность»). Было введено также и такое важное понятие будущей теории вероятностей, как математическое ожидание случайного события (в данном случае выигрыша в игре). Еще до опубликования этих писем, примерно в 1656—1657 гг., Гюйгенс, узнавший о том, что такие корифеи новой математики, как Ферма и Паскаль, серьезно заняты задачей на разделение ставки, подключился к этим исследованиям и в 1657 г. опубликовал работу «О расчетах в азартной игре» — первое увидевшее свет сочинение по теории вероятностей. В предисловии к этому изданию можно прочитать следующие примечательные строки: «Чем более трудной является задача определения при помощи рассуждений того, что кажется неопределенным и подчинено случаю, тем более наука, которая достигает результата, представляется удивительной. Во всяком случае, я полагаю, что при внимательном изучении предмета читатель заметит, что имеет дело не только с игрой, но что здесь закладываются основы очень интересной и глубокой теории (курсив мой. —А. Г.)» (3). Значение этой небольшой работы Гюйгенса трудно переоценить. И не случайно, что первая часть работы Я. Бернулли «Искусство предположений», появление которой знаменует окончательное становление новой теории, представляет собой перепечатку и тщательный комментарий упомянутой работы Гюйгенса. Таковы вкратце историко-научные факты, из которых следует вывод о том, что становление теории вероятностей как науки происходило во второй половине XVII в. (основные теоретико-вероятностные результаты были получены Я. Бернулли в 90-х гг. XVII столетия) (4). В связи с этими фактами интересно было бы разобраться в таком вопросе: является ли возникновение математической науки о случайном именно в XVII в. «случайным событием»? Правомерность этого вопроса обусловлена, с одной стороны, достаточно высоким уровнем развития математики в античности, а с другой стороны, имеющимися сведениями о распространенности как в античности, так и позднее, азартных игр, послуживших в XVII в. источником первых теоретико-вероятностных проблем. Можно ли предположить, что, сумей какой-либо любитель азартных игр в античности (вроде вошедшего в историю теории вероятностей кавалера де Мере) привлечь внимание крупных математиков своего времени к задачам на разделение ставки, то наука о случайном могла бы возникнуть намного раньше, чем это произошло на самом деле? Подобное предположение нельзя отметать с порога и потому, что для античности характерно пристальное внимание к проблемам необходимости и случайности, возможности и действительности. Одним из первых философов античности, рассмотревших проблему необходимого и случайного был Демокрит. Следует отметить, что реконструкция его позиции затруднена ввиду большого количества зачастую противоречивых сведений поздних авторов, которые характеризуют точку зрения Демокрита по этой проблеме. Уже само по себе такое многообразие мнений говорит о том, что проблема случайного отнюдь не относилась к маргинальным проблемам античной философии. Проблема необходимости и случайности занимает одно из центральных мест в философской системе Аристотеля. Философ предваряет изложение своей точки зрения обзором мнений предшественников и современников. «Некоторые сомневаются, существует случай или нет. Они утверждают, что ничего не происходит случайно, но что есть некоторая определенная причина для всего того, относительно чего мы говорим, что оно произошло спонтанно и случайно... Но и вот что удивительно: многое и происходит и существует случайно и спонтанно; эти мудрецы хорошо знают, что каждое [из этих событий] можно свести к какой-нибудь причине возникновения, как говорит древняя теория, отрицающая случай, и тем не менее часть [этих событий], по мнению всех людей, происходит случайно, а часть — неслучайно» (5). Примечательно, что здесь Аристотель считает своим долгом соотнести точку зрения философов со здравым смыслом — «мнением всех людей». И не случайно, что точка зрения самого Аристотеля в снятом виде включает в себя «философию здравого смысла». «Уничтожение случая, - пишет Аристотель, — влечет за собой нелепые последствия. Есть многое, что совершается не по необходимости, а случайно... Если в явлениях нет случая, но все существует и возникает из необходимости, тогда не пришлось бы ни совещаться, ни действовать для того, чтобы, если поступить так, было одно, а если иначе, то не было этого» (6). Подобная взвешенная точка зрения, признающая как необходимость, так и случайность, вряд ли преобладала в античности. Большинство античных мыслителей скорее были бы солидарны со Стобеем, утверждавшим, что «люди измыслили идол [образ] случая, чтобы пользоваться им как предлогом, прикрывающим их собственную нерассудительность» (7). Демокриту приписывается тождественное по смыслу высказывание: «Люди сотворили себе кумир из случая как прикрытие для присущего им недомыслия» (8). В целом философско-методологические представления, так или иначе связанные с теоретико-вероятностными рассуждениями, их значимостью и статусом, можно разделить на три большие группы. Первая гpyппa представлений — назовем их онтологическими — отвечает на вопросы о природе случайного, его месте в структуре реальности, о взаимоотношении случайного и необходимого. Вторая группа представлений отвечает на вопросы теоретико-познавательного характера (гносеологические представления). (Возможно ли, и если да, то при каких условиях достижение абсолютно достоверного знания? Имеет ли ценность для науки и философии знание, не обладающее абсолютной достоверностью? Каков статус так называемого вероятного знания? ) Третья группа представлений — методологические представленная — связаны с характеризацией самой теории вероятностей, выявлением ее места в системе научного знания, определением ее предмета, критериев истинности теоретико-вероятностных утверждений и т. п. Можно показать, что отличия гносеологических представлений, господствовавших в античности, от возникших в рамках философии и науки Нового времени, позволяют понять причины как отсутствия науки о случайном в античности (и средневековье), так и ее возникновения и бурного развития в ХVII—ХVIII вв. Для античной философской традиции характерна принципиальная дихотомия между знанием (episteme) и мнением (doxa). При этом под знанием понималась система абсолютно достоверных (истинных) утверждений, доказанных по образцу евклидовой геометрии (с соблюдением требований евклидовой строгости — утверждения выводятся из очевидных аксиом). Достижение достоверного знания, описывающего ту или иную область материи или духа, объявлялось единственной целью науки. За рассуждениями же, которые не удовлетворяли критериям доказательства геометрического типа, не признавали статуса научности. Выводы, связанные с подобными рассуждениями, относили к разряду мнения. Согласно Аристотелю, «предмет знания и знание отличаются от предмета мнения и от мнения, ибо знание направлено на общее и основывается на необходимых [положениях]; необходимое же есть то, что не может быть иначе. Многое же, хотя и истинно и существует, но может быть иным. Ясно поэтому, что о нем нет науки» (9). Очевидно, что в рамках такой гносеологической позиции невозможно представить себе возникновение науки о случайном, ибо оно не есть то, «что не может быть иначе». Это справедливо даже в том случае, если случайности придается статус объективного существования, что, как мы видели, имеет место у Аристотеля. Именно Аристотель, как никто другой, убеждает нас в том, что в условиях господства античных гносеологических представлений о достоверности знания, становление теории вероятностей как науки было невозможным. Признание объективности случая не могло навести Аристотеля на мысль о необходимости науки о случайном потому, что он резко «противопоставил логику истины, свойственную теоретическому знанию, логике вероятного и правдоподобного, присущей случайным спорам и обыденной практике» (10). «О случайном или преходящем, — писал Стагирит, — нет знания через доказательство... Если случайное... не есть ни то, что бывает большей частью, ни необходимое, то для него не может быть доказательства» (11). Средневековая европейская философия, основывавшаяся на теологически переработанной концепции Аристотеля, также не допускала возможности существования знания, не обладающего чертами абсолютной достоверности, завершенности, окончательности. Соответственно этому и в Средние века случайность, вероятность не стали объектом научного исследования, несмотря на то, что в трудах схоластов нашли место интересные философские рассуждения о природе случайного. Любопытно, что в Средние века (начиная с X—XI вв.) в связи с распространением азартных игр, с использованием игральных костей в различных рукописях встречаются подсчеты количества различных исходов при их бросании. Более того, в 1494 г. в Венеции был издан труд Луки Пачоли (1445 — ок. 1514г.) — «Сумма знаний по арифметике, геометрии, отношениям и пропорциональности», в котором рассматриваются, в частности, задачи о справедливом разделе ставки между двумя игроками, когда игра прервана до того, как один из играющих выиграл определенное число партий или очков согласно условиям игры. Однако в отличие от Паскаля и Ферма, рассматривавших подобные задачи в XVII в., Пачоли пытался решать их без использования вероятностных соображений (позднее предложенные им решения были признаны неверными) (12). Таким образом, задачи, решение которых в XVII в. привело к возникновению теории вероятностей, в условиях отсутствия соответствующих гносеологических предпосылок не сыграли той роли, которую им предстояло сыграть позднее. Более того, гносеологический пласт философско-методологических представлений о случайном лишь препятствовал возникновению науки о случайном — теории вероятностей. Но за счет чего был преодолен этот круг? Как показывает анализ, прежде всего вследствие вполне определенных социокультурных и соответствующих им метафизических метаморфоз. «Новый Органон» Бэкона в качестве новой гносеологической позиции, противостоящей перипатетизму, не снимал противопоставления «знание — мнение» в аристотелевском смысле. Однако у Бэкона нет пропасти между episteme и doxa. Напротив, достижение абсолютно достоверного знания «форм» связывается Бэконом с постепенным преобразованием данных опыта из области мнения в сферу знания посредством разработанных им процедур индуктивного метода. Исследовательская программа Бэкона стала программой созданного в 1660 г. Лондонского королевского общества. Однако на пути реализации указанной программы члены Королевского общества столкнулись со значительными трудностями. Исследовательская практика навязывала убеждение в том, что максимально достижимый результат в опытном естествознании — это хорошо обоснованная гипотеза. В дальнейшем эта гипотеза может уточняться за счет привлечения новых фактов, степень ее обоснованности может повышаться, при этом, однако, никогда не достигая уровня достоверности в аристотелевском смысле. Из этой ситуации может быть два выхода: устремиться по пути, указанному скептиками; и воздержаться от научных суждений или переосмыслить само понятие достоверности. Члены Королевского общества выбирают второй путь. Надо отметить, что на становление вероятностных аспектов гносеологии членов Королевского общества существенное влияние оказали философско-методологические воззрения Декарта (13). В свете принципиальных отличий декартовского рационализма от английского эмпиризма сам факт упомянутого влияния как нельзя лучше характеризует торжество вероятностной гносеологии XVII — начала XVIII вв. Согласно Декарту, абсолютно достоверное знание возможно лишь о том, что полностью подчинено сознанию. Это — знание, удовлетворяющее критериям ясности и отчетливости для разума и ограниченное пределами математики (в частности, созданной Декартом аналитической геометрии) и метафизическими истинами типа cogito ergo sum. Физический мир, однако, недоступен для абсолютно достоверного познания. Физическое познание, убежден Декарт, — это сфера более или менее вероятных гипотез, следствия из которых должны согласовываться с опытом, хотя последнее не гарантирует их абсолютной истинности. Предельно достижимый уровень достоверного в сфере опытного естествознания — это уровень моральной достоверности, «достаточный для того, чтобы управлять нашими нравами при равной достоверности вещей, в которых мы обычно не сомневаемся, касательно правил нашего поведения, хотя и знаем, что в смысле абсолютном эти правила могут быть и неверны» (14). Любопытно, что Р. Бойль, находившийся под влиянием идей декартовского гипотетизма, полагал, что моральная достоверность достижима на пути согласования или соединения нескольких вероятных суждений (15). Проблемы сравнения гипотез по их большей или меньшей вероятности, оценки вероятности гипотезы, полученной на основе соединения или согласования двух иди нескольких вероятных гипотез, численной оценки вероятности морально достоверной гипотезы, поставленные в связи со становлением новой, вероятностной гносеологии, настоятельно требовали создания, с одной стороны, соответствующего математического аппарата для необходимых вычислений, и, с другой стороны, построения основ новой, вероятностной логики научного познания. Необходимость создания вероятностной логики вскоре была зафиксирована Лейбницем, также испытавшим существенное влияние картезианства. «Я уже не раз говорил, — писал Лейбниц в «Новых опытах о человеческом разумении...», — что нужен новый раздел логики, который занимался бы степенями вероятности, так как Аристотель в своей «Топике» ничего не дал по этому вопросу» (16). Таким образом, для создания вероятностной логики оказалось необходимым возникновение математической науки об «оценке случайностей», или исчисления (теории) вероятностей. При этом просто и ясно сформулированные и в то же время достаточно содержательные (в свете целей исчисления вероятностей) задачи, связанные с азартными играми, стали стартовыми проблемами для становления новой теории. Отметим, что вероятностный круг был абсолютно невидим для античных математиков, они не осознавали в этом отношении какого-либо запрета или ограничения, препятствующего их научным исследованиям. Это справедливо потому, что данный круг носил исключительно внешний относительно математики характер. Социокультурные основания теоретического знания античности предопределили невозможность появления не только каких-либо вероятностных понятий, но и вообще каких-либо научных проблем, при решении которых такие понятия могли понадобиться. Другими словами, ни одному из античных математиков и в голову не могло прийти рассматривать какую-либо проблему, включающую какие-либо аспекты понятия «случайного». Естественно, что преодоление этого круга произошло без каких-либо сверхусилий со стороны математиков. Более того, становление вероятностной гносеологии Нового времени, её укорененность в социокультурном контексте теоретического знания существенным образом подталкивало математиков к разработке необходимого математического аппарата для создания казавшейся крайне необходимой вероятностной логики.
Популярное:
|
Последнее изменение этой страницы: 2016-05-29; Просмотров: 750; Нарушение авторского права страницы