Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Функции компонентов амальгамного сплава.
• Серебро обеспечивает прочность и устойчивость к коррозии, вызывает расширение при затвердевании. Олово вызывает усадку при затвердевании, уменьшает прочность и устойчивость к коррозии, увеличивает время отверждения. Медь при содержании менее 6 % играет ту же роль, что и серебро. Такие амальгамы (сплавы) называются обычными, или с низким содержанием меди. Цинк в процессе производства амальгамы уменьшает окисление других металлов сплава! Амальгамы с содержанием цинка более 0, 01 % называют цинксодержащими. Многие годы роль цинка дискутировалась последние исследования доказали большую долговечность пломб из цинксодержащей амальгамы. Однако если при постановке пломбы происходит загрязнение полости влагой или слюной, наблюдается значительное увеличение пломбы в объеме. • Другие металлы добавляются в объеме, не превышающем несколько процентов, и кардинально не меняют свойств амальгамы.
Классификация амальгамы По размеру и форме частиц сплава. 1. Игольчатая, или традиционная (обычная). Такой порошок сплава получается путем шлифования слитка амальгамного сплава на токарном станке для получения опилок. Характеризуется жесткостью при паковке. 2. Сферическая — получается путем распыления расплавленной амальгамы в инертном газе. Требует меньше ртути для реакции отверждения, т.е. имеет лучшие конечные физические свойства. Характеризуется мягкостью при паковке, что не всегда удобно. 3. Смешанная — получается при смешивании порошков первых двух видов. «Пакуемость» амальгамы регулируется изменением пропорций этих компонентов. По содержанию меди. 1. Амальгамные сплавы с низким содержанием меди (серебрянные) имеют в своем составе менее 6 % меди (ССТА). До 1960 г. почти все амальгамы были такого типа. Схематически реакция протекает следующим образом.
избыток Ag3Sn (гамма) + Hg = непрореагировавший Ag3Sn (гамма) + Ag2Hg3 (гамма-1) + Sn8Hg (гамма-2), или у + Hg = g + у1+ у2
2. Амальгамные сплавы с высоким содержанием меди (медные) обычно имеют в своем составе 10—30 % меди (ССТА-43, «Tytin», «Contour», Kerr; «Septalloy», Septodont). Такой состав имеет большинство современных амальгам. Причин этому несколько. Во-первых, при высоком содержании меди не происходит реакции между оловом и ртутью, т. е. не образуется самая слабая и подверженная коррозии фаза гамма-2. Во-вторых, медь замещает часть серебра в сплаве, что удешевляет амальгаму. Схематически реакция протекает следующим образом.
избыток AgSnCu (сплав) + Hg = непрореагировавший сплав + + Ag2Hg2(гамма-1) + Cu6Sn6.
По содержанию у2-фазы. Амальгамы могут быть описаны как содержащие у2-фазу или как не содержащие ее. Амальгамы с низким содержанием меди имеют в составе фазу Hg — Sn(g2), что ухудшает их физические свойства. Все амальгамы с высоким содержанием меди через несколько часов после замешивания не содержат у2 -фазу.
По содержанию цинка. Амальгамы с концентрацией цинка более 0, 01 % называют цинксодержащими («Dispersalloy», Dentsply). Такие амальгамы клинически имеют высокую прочность, долговечность и хорошее краевое прилегание. Однако контакт с влагой такой амальгамы до ее конденсации в полости рта вызывает значительное (несколько сотен микрометров на сантиметр) расширение в течение нескольких дней. Это связано с образованием водорода в структуре амальгамы из влаги в присутствии цинка, что и вызывает размерное изменение. Избежать этой проблемы можно, используя амальгамы, не содержащие цинк. Свойства амальгамы. Фазы. Для получения стоматологической амальгамы производится смешивание амальгамного сплава с ртутью. В процессе смешивания ртуть вступает в реакцию с опилками сплава и вызывает реакцию отверждения. Для удобства описания эти х процессов введены условные обозначения важнейших соединений этой реакции Фазой гамма (у) обозначается сплав серебра и олова AgSn фазой гамма-1 (у: ) — соединение серебра и ртути Ag2Hg3 фазой гамма-2 (у2) — олова и ртути Sn8Hg. Фаза гамма-2 является самой слабой и подверженной коррозии. В амальгамах с высоким содержанием меди при правильном замешивании фаз а гамма-2 либо не формируется вообще, либо устраняется через несколько часов после замешивания. Механические свойства. Все амальгамы характеризуются хорошими механическими свойствами. В зависимости от фор мы частиц сплава и их состава прочность на сжатие варьирует от 390 до 590 Мпа, диаметральная прочность — от 122 до 148 Мпа, модуль эластичности от 41 до 56 Гпа, статическая деформация от 0, 1 до 2, 5 %. Наибольшей прочностью как непосредственно после твердения, так и через неделю, отличаются сферические амальгамы с высоким содержанием меди. Коэффициент температурного расширения амальгамы в десятки раз превышает таковой зуба. Этот эффект следует учитывать при постановке металлических пломб. Уменьшить температурную чувствительность в таком случае может прокладка из цемента и изолирующий лак. Размерные изменения амальгамы, в основном, невелики. Усадка при твердении незначительна, особенно у амальгам с высоким содержанием меди. Однако пломба из цинксодержащей амальгамы с низким содержанием меди может увеличиваться в объеме в первую неделю на 400 мк. Это связано с попаданием влаги в полость зуба перед постановкой пломбы и может стать причиной сильных болей и даже раскола зуба. Прочность восстановленных сколов старых амальгамовых пломб будет ниже первоначальны х на 50 %. Добавление второй порции амальгамы к пломбе в одно посещение дает 75 % прочности цельной пломбы. Препарирование полости при этом должно проводиться по всем правилам механической ретенции. Содержание ртути. Ртуть является обязательным компонентом амальгамы, ее начальное содержание зависит от состава, формы и размера частиц сплава. Для образования стоматологической амальгамы требуется смачивание поверхности частичек порошка ртутью. Обычно начальное содержание ртути, в зависимости от свойств порошка, колеблется от 40 до 53 % по массе. Игольчатые амальгамы с низким содержанием меди требуют наибольшего количества ртути, сферические амальгамы с высоким содержанием ртути — наименьшего. Окончательное содержание ртути в амальгамах составляет 37—48 % и зависит от начального ее содержания и техники постановки пломбы. Биосовместимость. Биосовместимость амальгамы была предметом пристального изучения в течение многих десятилетий. В настоящее время считается, что пломбы из амальгамы не причиняют вреда здоровью пациентов, за исключением редких случаев гиперчувствительности. Однако многие исследователи небезосновательно считают, что ртуть из стоматологической амальгамы может создавать угрозу для здоровья стоматологического персонала, пациентов и окружающей среды. Исходя из токсикологического влияния ртути на организм, можно рассматривать три ее формы: элементарная ртуть (жидка я или пары); • неорганические соединения ртути; • органические соединения ртути. Жидкая ртуть относительно плохо всасывается через кожные и слизистые покровы. При всасывании ртуть в основном ионизируется и легко выводится почками. Широко распространенная ранее практика отжимания ртути из заешанной амальгамы рукам и не приводила к каким-либо серьезным проблемам со здоровьем оператора. Жидкая ртуть не представляет опасности для здоровья пациента, если ее частички были проглочены. В этом случае ртуть выходит в неизмененном виде с фекалиями. Пары ртути значительно более опасны для здоровья, так как быстро впитываются в кровь через легкие, оставаясь на несколько минут в неионизированной, т.е. липофильной, форме. Последнее позволяет ей проникать через тканевые барьеры, например гематоэнцефалический. Таким образом, ртуть может накапливаться в тканях. Наибольшую опасность представляет накопление ртути в мозговых и нервных клетках. При высокой концентрации ртути повреждается нервная проводимость, что ведет к нарушению работы мозга, вплоть до летального исхода. При более низких концентрациях отмечаются беспокойство, тремор, потеря концентрации внимания, нарушение отдельных функций. Для стоматологического персонала, работающего в помещении с высоким содержанием ртути, существует реальная опасность повреждения здоровья. Количество ртути, испаряющейся из амальгамовых пломб, даже при большом их количестве в полости рта пациента, значительно ниже той величины, которая может причинить вред здоровью. Неорганические соединения ртути, представленные в стоматологической амальгаме, обладают низкой или очень низ кой токсичностью. Они плохо впитываются, не накапливаются в тканях организма и хорошо выводятся. Некоторые неорганические соединения ртути используются в качестве наружного антибактериального средства. Для «контроля» ртути обычно используется сера, так как при их взаимодействии образуется ртутный сульфид, не представляющий опасности для окружающей среды. Органические соединения ртути очень токсичны в малых концентрациях, но ни одно из таких соединений не формируется в полости рта при использовании стоматологической амальгамы. Значительно большее беспокойство вызывает сброс соединений ртути с водой через канализацию в окружающую среду. Попадая в водное русло, соединения ртути оказываются в крупных водоемах, где микроорганизмы преобразуют их в неорганические формы, такие как хлорид ртути. Затем эти соединения поглощаются живыми организмами. По пищевой цепи ртуть попадает через морепродукты к человеку, вызывая отравления. Коррозия. Под коррозией подразумевается электрохимическое разрушение металла при взаимодействии с окружающими веществами. Все амальгамы подвержены коррозии. Z одной стороны, коррозия постепенно приводит к ухудшению механических свойств амальгамы, с другой — продукты коррозии заполняют микрощели между стенкой зуба и пломбой. Амальгама, не содержащая у2 -фазу, значительно меньше корродирует, нежели амальгамы с низким содержанием меди. Ускорению коррозии способствует наличие в полости рта различных металлов и сплавов, особенно в непосредственной близости друг от друга. Такое же воздействие оказывает также контактирование старой амальгамы с новой. Клинические свойства. Большое количество лабораторных и клинических исследований подтверждают высокую надежность амальгамы как пломбировочного материала.
8.2.3.2.2. Другие металлические пломбировочные материалы для прямого пломбирования
Сплавы галлия. В связи с токсичностью паров и соединений ртути была предпринята попытка внедрить аналогичный амальгаме пломбировочный материал на основе галлия. Коррозионная стойкость и механические свойства галлиевых пломб оказались ниже, чем амальгамовых, а поэтому эти материалы не нашли широкого применения. Когезивные металлы (золотая фольга). Использование чистого золота дает возможность проводить холодную сварку при комнатной температуре. В стоматологии чистое, или почти чистое золото используется для постановки небольших пломб I, II, III и V классов. Золотая фольга иногда также называется прямым золотом, или когезивным золотом. Золотая фольга поступает от производителя, покрытая тонким защитным слоем. Этот слой удаляют в пламени горелки. Фольга конденсируется в полости зуба при помощи различных ручных и механических инструментов. Пломбирование при помощи золотой фольги требует исключительного внимания и определенных способностей стоматолога. Операционное поле должно быть идеально чистым, так как любое загрязнение золота исключает его холодную сварку. Обработку и моделирование пломб производят как специальными ножами, так и вращающимися инструментами. Реставрации из когезивного золота отличаются исключительной долговечностью, если они правильно выполнены.
8.2.3.3. Полимерные пломбировочные материалы
Полимерами называются вещества, состоящие из длинных цепочек ковалентно связанных повторяющихся единиц — мономеров, содержащих углерод, водород и другие элементы. В стоматологии применяют полимеры, твердеющие в течение нескольких минут при комнатной температуре. Пломбировочные материалы, основу которых составляют полимеры, называют полимерными пломбировочными материалами. Все они обладают рядом сходных свойств. 1. Полимеры гидрофобны. При работе с ними их следует тщательно изолировать от влаги. Наличие влаги между зубом и полимерным пломбировочным материалом приводит к образованию микрощели, появлению ги перчувствительности, развитию кариеса и других осложнений. 2. Полимеры боятся загрязнений. Тонкая пленка, образованная органическими соединениями в ротовой жидкости и оставшаяся на зубах перед пломбированием, может нарушить адгезию. 3. Полимеры обладают полимеризационной усадкой. Уменьшение объема пломбировочного материала при твердении может привести к отрыву, образованию краевой щели, возникновению внутренних напряжений в пломбе. Основные способы компенсации усадки включают: четкое соблюдение инструкции по применению данного материала; уменьшение порции одновременно отверждаемого материала; использование технологии направленной и замедленной полимеризации для светоотверждаемых полимеров. 4. Все полимерные пломбировочные материалы отверждаются методом дополнительной или свободнорадикальной полимеризации. Для усиления механических свойств органического полимера в структуру материала может быть добавлен неорганический наполнитель. Таким образом, полимерные пломбировочные материалы могут быть ненаполненными и наполненными. Неорганический наполнитель придает материалам прочность, уменьшает полимеризационную усадку, повышает устойчивость к истиранию.
8.2.3.3.1. Пластмассы
Пластмассам и в стоматологии традиционно называю т материалы, основу которых составляют акриловые или эпоксидные мономеры (Акрилоксид, Карбодент, «Стома»). Они характеризуются низкой молекулярной массой мономера, токсичностью, относительной непрочностью, значительной полимеризационной усадкой (21 %), нестабильным цветом, высокими показателями истираемости и водопоглощения в условиях полости рта, могут служить средой для развития некоторых видов микроорганизмов. Если в состав пластмасс входит наполнитель, связи между ними органической матрицей не существует. Таким образом, наполнитель не сильно изменяет свойства пластмасс, и их структура остается волокнистой. Пластмассы обычно представлены системой порошок — Жидкость. Порошок состоит из части полиметилметакрилата, пигментов и инициатора полимеризации; жидкость из метилового эфира метакриловой кислоты и стабилизатора (ингибитора полимеризации). В связи с низкой прочностью пластмасс допускается пломбирование ими полостей III, IV, V классов. Вследствие выделения остаточного мономера (токсичное действие) рекомендуется постановка пломб из пластмасс только с использованием изолирующих прокладок. Особое внимание следует уделять снижению риска возникновения аллергических реакций на компоненты акриловых пластмасс (метилметакрилат) как у пациентов, так и у персонала. Помещение при работе с пластмассами должно хорошо проветриваться. При попадании мономера или пластмассы на кожу необходимо промыть ее большим количеством проточной воды, а при попадании в глаза после обильного промывания проточной водой обратиться за специализированной помощью.
8.2.3.3.1. Композиты
Композитами называют вещества, состоящие из нескольких разнородных составных частей. В стоматологии композита ми принято называть вещества, состоящие из органической полимерной матрицы, неорганического наполнителя и связующего слоя (силана). Принципиальным отличием композитов от пластмассявляется наличие третьего компонента, соединяющего разнородные по химической структуре вещества (матрицу и наполнитель) в один материал. Особое свойство композитов дает возможность присоединения новых порций материала к уже затвердевшим. Полимеризованный композит является инертным веществом и не обладает токсичностью (кроме композитов первых поколений). Пломбы из современных композитов накладывают без изолирующих прокладок даже при глубоких полостях. По требованию Международной Организации Стандартов (ISO) пломбировочные материалы, применяющиеся для пломбирования жевательной поверхности зубов, должны обладать рентгеноконтрастностью. Композиты, предназначенные для пломбирования только передних зубов, могут быть не рентгеноконтрастными. Практически все современные композиты применяются в сочетании с адгезивными системами, описание которых приведено в соответствующем разделе. Структура. Органическая полимерная матрица. Распространение композитов стало возможным после введения в практику Р.Л. Боуэном (R.L. Bowen) бисфенолглицидилметакрилата (Бис-ГМА). Этот мономер обладает большой молекулярной массой, способен образовывать очень длинные цепочки, которые «охватывают» частички наполнителя. Он твердеет при комнатной температуре и наличии катали затора всего за 3 мин. Полимеризационная усадка составляет 5 %. Бис-ГМА составляет основу почти всех современных стоматологических пломбировочных композитов. Для придания композитам определенных свойств используют также модификации Бис-ГМА, такие как уретандиметакрилат, триэтиленгликольдиметакрилат и др. Некоторые производители используют в качестве основы органической матрицы олигометакрилаты. В состав органической матрицы входят также инициаторы и ингибиторы полимеризации, катализаторы, поглотители ультрафиолетовых лучей, некоторые другие вещества. Органическая матрица определяет пластичность композита, его адгезивные свойства, биосовместимость; оказывает влияние на прочность, цветостабильность, степень полимеризации композита. Наполнитель. Обусловливает такие свойства композитов, как прочность, усадка, водопоглощение, устойчивость к истиранию, рентгеноконтрастность, цветостабильность. В качестве наполнителя применяют плавленный и кристаллический кварц, алюмосиликатное и борсиликатное стекло, Различные модификации диоксида кремния, аэросил, предварительно полимеризованный дробленый композит и другие вещества. Существует принципиальная разница в определении ко личества наполнителя по массе и по объему. Неорганичес кий наполнитель тяжеле е жидкого мономера, поэтому его массовая доля всегда превышает объемную на 10—15 %. Фи зические свойства композита лучше характеризуе т показа тель объемного соотношения матрицы и наполнителя. Именно от объема органического вещества зависит величина усадки и другие характеристики. При сравнении материалов необходимо учитывать однотипные показатели. Размер частиц наполнителя может варьировать от 0, 01 до 45 мкм. Чем крупнее эти частицы, тем больше его можно ввести в состав композита, тем выше прочность материала, меньше усадка при неизменной пластичности. Однако крупные частицы образуют шероховатую, лишенную блеска поверхность, способствуют повышенной истираемости пломбы. Маленькие частицы позволяют сделать композит полируемым, более устойчивым к истиранию. Ввести большое количество мелкого наполнителя в состав материала невозможно, так как маленькие частицы обладают большой площадью поверхности. В материалах с маленькими частицами наполнителя ухудшаются также основные физические показатели, такие как прочность, водопоглощение, цветостабильность. Для сохранения пластичности и прочности все частицы наполнителя должны быть «окутаны» органической матрицей. Форма частиц наполнителя также оказывает огромное влияние на свойства композита. Так же как и в амальгаме, игольчатый, нерегулярный наполнитель становится основой высокой прочности, а окатанный, круглый наполнитель позволяет композиту лучше полироваться, делает его более пластичным. Связующий слой. Чаще всего он представлен силаном, который наносится на поверхность неорганического наполнителя в заводских условиях еще до смешивания с органической частью. Силан — это кремнийорганическое соединение, биполярный связующий агент. Он образует химическую связь, с одной стороны, с неорганическим наполнителем, а с другой с органической матрицей. За счет такой связи структура композита становится однородной, повышаются его прочность и износостойкость, снижается водопоглощение. Все композиты полимеризуются по свободнорадикальному типу. Образование свободных радикалов и отверждение происходит в результат е тепловой, химической или фотохимической реакции. Тепловая полимеризация используется только в лабораторных условиях, так как нагревание композита до высокой температуры в полости рта невозможно. Наибольшее распространение получили композиты химической и фотохимической (световой) активации. Полимеризация композитов никогда не происходит на 100 %, что обеспечивает послойное соединение, а также возможность восстановления старых реставраций. При соприкосновении с воздухом поверхность композитов вступает во взаимодействие с кислородом, что приводит к прекращению (ингибированию) реакции полимеризации. Таким образом, поверхность всех композитов, отвержденных в атмосфере воздуха, покрыта слоем, ингибированным кислородом. Данный слой способствует лучшему скреплению слоев композита между собой. Однако при избытке слоя, ингибированного кислородом, процесс соединения слоев композита нарушается, что может вызвать ослабление конструкции, изменение ее свойств. Правильно использовать свойства ингибированного слоя позволяет техника пластической обработки композита при укладке очередной порции. Блокировать реакцию полимеризации может не только кислород воздуха, но и кислород, выделяющийся при распаде пероксида водорода. Поэтому обрабатывать полость зуба пероксидом водорода перед использованием полимерных пломбировочных материалов не следует. Ткани зуба насыщаются кислородом также в процессе химического отбеливания зубов с применением перекисных соединений. После последнего сеанса отбеливания зубов с применением перекисных соединений следует выждать несколько дней перед Реставрационными процедурами для уменьшения насыщенности тканей зуба кислородом. Эвгенол также может блокировать отвердежние полимеров. Поэтому не рекомендуется перед применением полимерных пломбировочных материалов использовать прокладочные материалы или пасты для пломбирования каналов на основе эвгенола. Полимеризационная усадка композитов варьирует, в зависимост и о т содержания неорганическог о наполнителя, от 1, 8 до 5 %. Для светоотверждаемых материалов влияние на процесс усадки оказывает интенсивность светового потока в начале полимеризации. Для ее уменьшения рекомендуется применять более низкую интенсивность света в первые несколько секунд (так называемый «мягкий старт»). Композиты химической активации (химические, самоотверждаемые). Представлены, как правило, системами паста—паста или порошок—жидкость. Один из компонентов содержит химический активатор, другой — инициатор полимеризации. При смешивании двух компонентов образуются свободные радикалы, инициирующие реакцию полимеризации. Качество композита в этом случае будет зависеть от точности дозировки компонентов и тщательности их перемешивания. Цвета каталитической и базовой паст различаются. Создание при их перемешивании однородного цвета свидетельствует о готовности композита для внесения в полость зуба. Некоторые вещества, обычно в составе каталитической пасты, могут самопроизвольно разлагаться при повышении температуры или длительном хранении. Время работы такими материалами всегда ограничено и уменьшается при повышении температуры, а при понижении — увеличивается. Полимеризация химических композитов происходит одновременно по всему объему. Следовательно, усадка самоотверждаемых композитов должна быть направлена к «центру» полимеризации. Однако последнее утверждение спорно, так как реакция полимеризации ускоряется при соприкосновении с более теплыми стенками зуба, покрытыми также затвердевшим адгезивом. В качестве примеров композитов этой группы можно на звать «Evicrol», Denta l Spofa; «Consise», 3M; «Adaptic», Dentsply; Эпакрил, «Стома». Композиты световой активации (светоотверждаемые, фотополимеры, гелиоматериалы). Представляют собой одноком- понентные пасты, изготовленные и упакованные в заводских условиях. Реакция полимеризации инициируется видимым голубым светом с длиной волны 450—550 нм. Под действием света определенной длины волны инициатор полимеризации распадается, вызывая комплекс реакций, ведущих к образованию свободных радикалов и формированию полимерных цепей. Для правильной полимеризации таких материалов следует четко придерживаться инструкции производителя, как по времени полимеризации, так и по виду устройства, рекомендуемого для работы с этим композитом. Глубина полимеризации для разных композитов может составлять от 2 до 10 мм. Она зависит от опаковости и цвета материала. Усадка фотополимеров теоретически направлена к источнику света. Однако, учитывая скорость распространения светового потока, можно сказать, что небольшие порции фотокомпозита (в пределах 2 мм толщины) полимеризуются одновременно во всей массе, аналогично самоотверждаемым. Полимеризационную усадку светоотверждаемого композита можно снизить плавным началом полимеризации, уменьшением объема отверждаемого материала, направленной полимеризацией. Светоотверждаемые композиты имеют существенные преимущества перед химически отверждаемыми: • однокомпонентность; • высокая прочность; • «командная» полимеризация; • удобство работы, отсутствие спешки; • высокая цветостабильность; • экономичность: врач берет столько материала, сколько ему нужно; • высокая эстетичность и точность воспроизведения цвета; • возможность воссоздания множества оттенков и несколько степеней прозрачности. Особенность композитов световой активации состоит в наличии паст различной прозрачности (или непрозрачности, опаковости). Аналогично структуре зуба выделяют 3 вида материала по этому признаку: аналог дентина — опаковые тона; аналог эмали — эмалевые тона; аналог режущего края — тона режущего края. По прозрачности они различаются между собой, в среднем, на 20—30 %. Укладывая различные по цвету и прозрачности виды материала в одну реставрацию, можно достичь полной имитации структуры зуба. Опаковые тона служат для маскировки пятен и создания «отражающей» среды, подобно дентину зуба, эмалевые тона в основном окрашивают и рассеивают свет, тона режущего края только преломляют и слегка рассеивают свет, создавая «живость» реставрации. Для активации реакции полимеризации светоотверждаемых материалов требуется внешний источник голубого света. Такое устройство называется полимеризационным прибором, или лампой. Для получения голубого света с длиной волны 470—550 нм используются специальные установки: галогеновые, диодные, плазменные, лазерные. Обычно они состоят из собственно источника света, блока управления и световода. Для правильной работы требуется минимальная мощность светового потока 300 мВт/см 2 (для приборов с галогеновой лампой). Световод должен находиться во время полимеризации как можно ближе к поверхности материала. Удаление его на 5 мм снижает мощность светового потока на 30 %. Кроме света полимеризационные установки могут генерировать тепло. Мощность теплового потока не должна превышать 50 мВт/см 2. Полимеризационные устройства разных производителей отвечают общим стандартам и могут использоваться для отверждения материалов разных фирм. В связи с высокой яркостью света, необходимой для полимеризации, следует избегать попадания в глаза прямого и отраженного света, пользуясь защитными очками или экранами. Этот свет не содержит ультрафиолетовых лучей. Перед использованием конкретного прибора следует внимательно ознакомиться с инструкцией по эксплуатации. Недостатки светоотверждаемых материалов заключаются в сложной технологи и их применения, необходимости использования дополнительного оборудования (полимеризационный прибор, защитные очки, экран), высокой стоимости.
Классификация композитов Популярное:
|
Последнее изменение этой страницы: 2016-05-30; Просмотров: 954; Нарушение авторского права страницы