Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Виды переувлажнения грунтов на аэродромах и инженерные мероприятия по отводу воды. Водоотвод и дренажные системы искусственных покрытий и грунтовой части летного поля.



Эксплуатация летных полей допустима, если грунты обладают высокой несущей способностью, которая зависит от их влажности. При значительной влажности несущая способность грунта резко снижается и нормальная эксплуатация самолетов с грунтовых стартов становится

 

 

невозможной. Для благоприятного развития дернового покрова на летном поле грунты также не должны быть слишком влажными.

Таким образом, на грунтовых стартах летных полей избыточное увлажнение недопустимо. Поэтому основной задачей осушительной системы летного поля является удаление избытков поверхностной или грунтовой воды.

Осушение летного поля должно решаться с учетом проекта вертикальной планировки аэродрома. В ряде случаев вертикальная планировка может в значительной мере устранить избыточное переувлажнение грунта. При создании проекта вертикальной планировки летного поля необходимо, как правило, обеспечивать естественный сток поверхностных вод.

Способы осушения летного поля зависят от причин образования избыточного переувлажнения и типа водного питания.

Защита от притока воды, стекающей со смежных водосборов, осуществляется при помощи нагорных канав, перехватывающих и отводящих воду в ближайшие водоемы или в понижения рельефа (рис. 8.1).

Рис. 8.1. Перехват поверхностных вод нагорной канавой

Кавальеры нагорных канав должны устраиваться со стороны аэродрома непрерывными на всем протяжении. Для перехвата и отвода воды могут быть использованы насыпи и кюветы автомобильных и железных дорог, проходящие вблизи аэропорта.

Для защиты летного поля аэродрома от затопления во время паводков устраивают ограждающие дамбы с укрепленными откосами (рис. 8.2). Высоту таких дамб принимают на 0, 5 м выше самого высокого уровня паводковых вод, повторяющегося 1 раз в 10 лет.

 

 

При атмосферном питании основным способом осушения летного поля является ускорение стока с целью быстрого отвода воды за пределы аэродрома и максимального уменьшения впитывания атмосферных осадков грунтами. Для предотвращения застоя воды в этом случае устраивают специальную водосточную сеть. При грунтовом питании предусматривается понижение уровня грунтовых вод при помощи осушительных дрен. Норму осушения (максимально допустимая глубина от поверхности грунта до максимального уровня грунтовых вод или длительной верховодки) для ГВПП принимают равной 0, 6 м в песчаных и супесчаных грунтах и 0, 8 м – в суглинистых.

Рис. 8.2. Предупреждение затопления летного поля устройством дамбы: 1 – дамба; 2 – река

При грунтовонапорном питании в местах выхода воды на поверхность она перехватывается ловчими каналами или подземным дренажем (рис. 8.3).

Рис. 8.3. Перехват грунтовых вод ловчей канавой или ловчей дреной

Как правило, отвод воды из осушительной сети должен осуществляться самотеком. Устройство водоподъемных станций, требующих постоянного обслуживания, допускается лишь в исключительных случаях при специальном обосновании.

При выборе типа осушения летного поля также надо учитывать геологические, гидрогеологические условия и рельеф местности.

9. КОНСТРУКЦИИ ИСКУССТВЕННЫХ ПОКРЫТИЙ АЭРОДРОМОВ.

 

9.1 Типы искусственных покрытий. Основные требования к искусственным покрытиям. Конструктивные слои искусственных покрытий. Классификация покрытий и общие положения по их конструированию.

С целью полного устранения перерывов в летной работе авиации и обеспечения круглогодичной бесперебойной эксплуатации аэродрома на летном поле устраивают искусственные покрытия (на взлетно-посадочных полосах, магистральных и соединительных рулежных дорожках, групповых и индивидуальных местах стоянок самолетов, перронах). Покрытия на современных аэродромах занимают значительные площади. В аэропортах высших классов общая площадь покрытий составляет около 500-800 тыс. м2 и более (2-15% общей площади аэропорта), а стоимость покрытий достигает 20-25% стоимости аэропорта.

При благоприятных почвенно-грунтовых, гидрогеологических и климатических условиях, исключающих переувлажнение и пылимость летного поля, искусственные покрытия на аэродромах низших классов могут не устраиваться.

Искусственные покрытия аэродромов подвержены воздействию эксплуатационных факторов, связанных с базированием самолетов, климатических и гидрогеологических факторов.

Особенностью искусственных покрытий аэродромов следует считать относительно большую площадь их контакта с грунтом оснований, небольшое заглубление в грунтовый деятельный слой и совершенно открытую поверхность. Это надо иметь в виду при оценке влияния на работу покрытий каждого из указанных факторов.

При анализе влияния эксплуатационных факторов на работу искусственных покрытий необходимо учитывать интенсивное воздействие статических и динамических самолетных нагрузок, потока газов и высокой температуры от работающих двигателей. Статические расчетные нагрузки соответствуют полному взлетному весу самолета расчетного типа. Для большинства современных самолетов расчетная нагрузка на покрытие передается при помощи трехточечного шасси, состоящего из двух главных и одной носовой опор. Основная часть нагрузки (80-90%) равномерно распределена на две главные опоры, а носовая опора воспринимает оставшуюся часть нагрузки.

В зависимости от конструкции самолета главные опоры могут быть с одиночными и многоколесными шасси. Многоколесные шасси,

 

значительно улучшают условия работы покрытий за счет распределения нагрузки на большую площадь. Простейшим типом многоколесных шасси является опора, имеющая два сдвоенных колеса (рис. 9.1).

Рис. 9.1. Главные двухосные опоры самолетов со сдвоенными колесами

Лучшие условия работы покрытий обеспечивает опорная точка самолета, имеющая четыре колеса. Применение сдвоенных и счетверенных колес на опорах самолета позволяет значительно уменьшить толщину покрытий. Помимо статических нагрузок, характерных для МС самолетов, аэродромные покрытия подвержены динамическим нагрузкам от двигающихся с большой скоростью самолетов при рулежке, взлетах, посадках и торможении.

В связи с влиянием подъемной силы и различными скоростями движения самолета величины действующих на покрытия нагрузок неодинаковы. На концевых участках ИВПП при нормальных посадках динамические нагрузки незначительно превышают статическую и в ряде случаев бывают даже меньше ее. Динамическая нагрузка может достигать и большей величины после первого удара колес о покрытие, но ее абсолютная величина мало отличается от статической нагрузки. Время воздействия ударных нагрузок при посадках самолетов исчисляется долями секунды.

Наблюдения показали, что существенного ухудшения условий работы покрытий при посадочных ударах не происходит. Это подтверждается и результатами обследования состояния их покрытий на различных аэродромах, которые показали, что на участках, где происходят посадки самолетов, покрытия, как правило, не имеют серьезных разрушений.

При движении самолетов в процессе руления, взлетов и посадок из-за местных естественных неровностей покрытий (выколов, выбоин, уступов в швах и т.п.) развиваются колебания самолетов, поэтому фактические нагрузки на покрытие возрастают. Существенное влияние на величину нагрузки имеет скорость самолета. При движении самолета с небольшой скоростью пневматические шины колес при переезде неровностей обжимаются и не вызывают резкого возрастания нагрузки на покрытие.

 

От увеличения скорости самолета наблюдаются удары колес о покрытие и нагрузки на покрытие возрастают. При дальнейшем увеличении скоростей начинает развиваться подъемная сила, которая принимает на себя часть веса самолета, и нагрузка на покрытие существенно уменьшается.

Наибольшие нагрузки на покрытие бывают при движении самолета со скоростью 30-40 км/ч, когда влияние подъемной силы невелико. Величина нагрузки на покрытие во многом зависит также от состояния его поверхности. На достаточно ровных покрытиях динамические нагрузки незначительно превышают статические. При неровностях высотой до 1-2 см динамические нагрузки возрастают на 20-30% по сравнению со статическими нагрузками. При неровностях высотой 3, 5-4, 0 см возрастание динамических нагрузок достигает 30-45%. Помимовертикальных сил, на покрытия аэродромов действуют и горизонтальные силы, возникающие от ударов колес при накатывании на неровности и от трения пневматических шин при торможении самолетов. От горизонтальных сил зависит износ и возможность образования волн и сдвигов на асфальтобетонных и щебеночных, покрытиях, обработанных органическими вяжущими.

При опробовании двигателей на покрытие воздействует вибрация. Испытания покрытий самолетами с работающими двигателями на стоянках показали, что существенного увеличения нагрузок на покрытия в этих случаях не происходит. На МС самолеты длительное время находятся в статическом состоянии. На места стоянки они заходят с малыми скоростями, поэтому динамическое воздействие нагрузки будет минимальным.

Таким образом, в наиболее неблагоприятных условиях работы, при воздействии самолетных нагрузок находятся те участки покрытий, где самолет движется со скоростью 30-40 км/ч. К таким участкам относятся магистральные рулежные дорожки. В более благоприятных условиях находятся концевые участки ВПП, соединительные и вспомогательные рулежные дорожки, где самолет движется с малыми скоростями.

Средние участки ИВПП, где скорость движения самолетов достигает значительных величин, испытывают меньшие нагрузки. В лучших условиях находятся и места стоянок самолетов, где нагрузки носят статический характер.

Основная масса деформаций сосредоточена на концевых участках, где скорость движения самолета значительно меньше, чем в средней части. В

 

количественном отношении динамическое воздействие самолетных нагрузок на покрытие может характеризоваться коэффициентом динамичности kдн, который показывает увеличение усилий в покрытии от влияния динамичности приложения нагрузок и количественно может быть определен как отношение прогибов покрытия при динамическойWдн и статической Wст нагрузках и соответственно . Для современных самолетов коэффициент динамичности изменяется от 1, 0 до 1, 2.

Наблюдения и расчеты показывают, что тяжелые реактивные и турбореактивные самолеты довольно точно приземляются по оси ИВПП. Из распределения мест посадок тяжелых самолетов по ширине ИВПП на центральную часть полосы приходится около 50% разбегов и пробегов самолетов. На РД, особенно на магистральных, колеса самолета движутся по одному следу, что значительно увеличивает повторность приложения нагрузок. Таким образом, условия работы покрытий на РД и на средней части ИВПП наиболее тяжелые, что учитывается повышенными значениями толщины покрытий на этих участках. Прочность краевых (боковых) участков покрытий ИВПП по обе стороны от осевой полосы, а также МС может быть уменьшена на 10-15% по сравнению с прочностью центрального участка.

Кроме нагрузок от веса самолета, на покрытие действует воздушная струя от самолета с поршневыми двигателями и поток отходящих газов реактивных двигателей, а также отрывные силы как следствие эффекта всасывания при работе двигателей.

Струи турбореактивных двигателей при максимальных оборотах имеют температуру газов 600-800°С, а скорость газов при выходе из сопла – 600-700 м/с. При соприкасании с покрытием температура струи снижается до 250-350°С, а скорость до 10 м/с (рис. 9.2).

На ИВПП, где самолет движется с большой скоростью, а продолжительность воздействия струи невелика, искусственные покрытия не успевают сильно прогреться. Для стартовых участков ИВПП и МС самолетов высокие температуры (до 200°С) и большие скорости потока газов (до 100 м/с) представляют опасность для искусственных покрытий.

Поэтому эти участки покрытий, а также участки летного поля, примыкающие к торцам ИВПП и рулежным дорожкам, где струя отходящих газов выжигает растительный покров, должны быть укреплены.

 

 

 

Рис. 9.2. Распределение скоростей (а) и температур (б) в газовых струях реактивных самолетов

Струя в месте контакта с покрытием распространяется на площадь эллиптической формы, называемую полем струи. У современных самолетов длина поля струи составляет 50-60 м на режиме руления и 80-100 м на режиме максимальных оборотов. Максимальная ширина поля струи соответственно составляет 20-30 и 30-50 м. Продолжительность воздействия струи отходящих газов реактивных двигателей на покрытие в среднем составляет:

– при опробовании двигателей (номинальный режим) на местах стоянок – 3-5 мин.;

– при стоянке на перроне при малых оборотах – 2-3 мин.;

– при стоянке на старте в ожидании получения разрешения на вылет (номинальный режим) – 1, 0-2, 5 мин.

Для устранения опасного влияния струи можно применять наклонные бетонные барьеры или решетчатые экраны, которые отклоняют газовую струю вверх.

Не менее важное влияние на работу искусственных покрытий оказывают климатические и гидрологические факторы. Искусственные покрытия подвержены воздействию природных факторов – переменному температурно-влажному режиму, пучению или набуханию подстилающих грунтов, многократному замораживанию и оттаиванию, влиянию солнечной радиации, ветровой эрозии и т.д.

Морозное пучение, происходящее за счет сегрегации льда, выделяющегося в виде прослоек, приводит к увеличению общего объема промерзающей толщи грунта и вертикальному поднятию его поверхности. Развивающиеся в искусственных покрытиях под влиянием переменного

 

температурного режима напряжения могут вызвать разрушение. Они особенно опасны для длинных бетонных плит. Существенное значение на развитие температурных напряжений в покрытиях имеет солнечная радиация. Многократное замораживание и оттаивание может привести к разрушению покрытий или появлению отдельных трещин. Природные факторы должны учитываться при выборе типа и конструкции искусственных покрытий.

Для уменьшения вредного влияния природных факторов следует применять материалы высокого качества и строго соблюдать все технические требования при их обработке и применении.

К основным требованиям, предъявляемым к искусственным покрытиям, относятся:

– прочность;

– надежность и долговечность;

– беспыльность поверхности;

– ровность и достаточная шероховатость, создающая сцепление колес самолета с покрытием;

– сопротивляемость климатическим и гидрологическим факторам;

– водонепроницаемость, препятствующая прониканию поверхностных вод в грунтовое основание;

– сопротивляемость воздействию струй выхлопных газов реактивных двигателей;

– стойкость против действия топлива и смазочных материалов;

– экономичность – простота строительства при максимальном использовании средств механизации;

– простота ухода за покрытием при ремонте и содержании;

– возможность реконструкции покрытий при появлении новых типов самолетов с большими скоростями движения и нагрузкам на опору.

На аэродромах применяются два типа искусственных покрытий – жесткий и нежесткий (рис. 9.4).

Жесткие покрытия обладают способностью воспринимать растягивающие напряжения, вызываемые действием самолетной нагрузки и температурно-усадочными факторами. Покрытие под нагрузкой работает как плита на упругом основании. Деформации покрытия, как правило, упругие, а давление плиты на грунт относительно мало.

 

Рис. 9.4. Схема работы покрытий под нагрузкой: а – жесткое покрытие; б – нежесткое покрытие; S – прогиб; D – диаметр чаши прогиба

К жестким относятся покрытия из монолитного предварительно напряженного бетона и железобетона, из сборных предварительно напряженных железобетонных плит, из монолитного железобетона, бетонные и армобетонные покрытия.

Нежесткие покрытия не воспринимают растягивающих напряжений. Их сопротивление самолетным нагрузкам обусловливается сопротивлением подстилающего грунта сжатию и боковому выжиманию. В периоды весенней и осенней распутиц давление на грунт достигает значительной величины, а деформации покрытий носят пластический характер.

К покрытиям нежесткого типа относятся асфальтобетонные, черные щебеночные и гравийные, устраиваемые способом пропитки или смешением на месте, из грунтов, укрепленных вяжущими.

В зависимости от срока службы и конструктивных особенностей искусственные покрытия разделяются на капитальные, усовершенствованные, упрощенные и временные.

Капитальные типы покрытия применяются на аэродромах, предназначенных для эксплуатации тяжелых реактивных и турбореактивных самолетов. Они допускают большое количество взлетно-посадочных операций и имеют большой срок службы. К капитальным покрытиям относятся жесткие покрытия, асфальтобетонные, а также черные щебеночные покрытия, устраиваемые методом пропитки.

Усовершенствованные покрытия применяются на аэродромах, предназначенных для эксплуатации средних самолетов. К усовершенствованным покрытиям относятся черные щебеночные, устраиваемые методом смешения на месте, и гравийные покрытия, обработанные органическими вяжущими.

Упрощенные покрытия применяются при эксплуатации аэродрома легкими самолетами. Покрытия устраивают из грунтов, укрепленных вяжущими.

 

 

Временные покрытия после использования допускают разборку, перевозку и укладку на другом аэродроме. К временным покрытиям относятся покрытия из стали, пластмасс и легких сплавов.

Типы и конструкции искусственных покрытий устанавливают в зависимости от категории расчетной нагрузки, климатических и гидрологических факторов с необходимым техники экономическим обоснованием и наличия местных строительных материалов.

 

Покрытия жесткого типа. Принципы конструирования покрытий жесткого типа. Бетонное покрытие. Железобетонные и армобетонные покрытия. Усиление существующих жестких покрытий при реконструкции аэродромов.

Жесткие покрытия на аэродромах начали устраивать с 1930 годов. Это были покрытия из бетонных шестигранных плит толщиной 10-14 см с размером стороны 1, 25 м. Плиты укладывали вручную. Покрытия такого типа строили до 1941 г. и в первые послевоенные годы, и они надежно обеспечивали эксплуатацию самолетов того периода. Однако такие покрытия непригодны для эксплуатации скоростных тяжелых самолетов, так как их прочность оказалась недостаточной. Кроме этого, и размеры старых бетонных взлетно-посадочных полос были малы для новых самолетов, длина разбега и пробега которых значительно увеличилась по сравнению с самолетами старого типа.

Позднее начали применять более мощные бетонные покрытия. Первоначально увеличение их прочности обеспечивалось лишь увеличением толщины бетонных плит с 10-14 до 14-22 см и сторон шестигранных плит до 1, 5 м. Такие покрытия также устраивали вручную с применением средств малой механизации. В последующие годы на строительстве аэродромов появились бетоноукладочные машины, которые позволили полностью механизировать устройство бетонных покрытий. При этом пришлось отказаться от шестигранных плит и перейти на плиты прямоугольной формы, применение средств механизации для укладки которых значительно проще. Однако бетонные покрытия обладают рядом существенных недостатков. Поэтому дальнейшее совершенствование жестких аэродромных покрытий происходило за счет изменения их конструкции.

Армобетонные покрытия – первый этап совершенствования бетонных покрытий. Они нашли широкое применение для аэродромов, рассчитанных на средние и тяжелые нагрузки. Еще более

 

совершенны предварительно напряженные бетонные и железобетонные покрытия.

Большую перспективу имеют жесткие покрытия, собираемые из предварительно напряженных железобетонных плит, изготовляемых на заводах железобетонных изделий. Заводское изготовление плит обеспечивает их высокое качество. На месте осуществляется только монтаж плит, в результате чего резко сокращаются сроки реконструкции или возведения ВПП. В настоящее время они практически полностью вытеснили другие виды жестких покрытий.

Тип и конструкцию покрытий назначают на основе технико-экономического сопоставления вариантов с учетом класса аэродрома, его назначения и величины нормативной нагрузки (табл. 9.1), климатических, гидрогеологических и грунтовых условий района строительства, предполагаемой интенсивности эксплуатации, концентрации и направленности движения и особенностей воздействия на покрытия предполагаемых к эксплуатации самолетов, наличия местных строительных материалов.

Таблица 9.1. Категории нормативной нагрузки на жесткие дорожные одежды ИВВП

Категория нормативной нагрузки Величина нормативной нагрузки на опору, кН Давление в пневматических шинах, МПа Тип основной опоры
некатегорийная   1, 0 Четырехколесная
I   1, 0  
II   1, 0  
III   1, 0  
IV   1, 0 Одноколесная
V   0, 6  
VI   0, 4  

Примечания. 1. Расстояния между пневматическими шинами условной четырехколесной опоры приняты равными 70 и 130 см. 2. Заданием на проектирование нормативные нагрузки III и IV категорий могут устанавливаться одноколесными, равными

 

соответственно 170 и 120 кН, а давление в пневматических шинах для V и VI категорий нагрузки равным 0, 8 МПа.

Рекомендуемые конструкции покрытий в зависимости от категории нормативной нагрузки приведены в табл. 9.2.

Таблица 9.2. Рекомендуемые конструкции жестких покрытий

Тип покрытия Рекомендуемые конструкции для категории нагрузки
I II III IV V VI
Монолитное предварительно напряженное + + +
Армобетонное + + + + +
Сборное из предварительно напряженных плит (заводского изготовления) + + + +
Бетонное +

Примечания. 1. Знак «+» означает целесообразность применения конструкций, знак «–» – нецелесообразность. 2. Для I и II категорий нормативных нагрузок разрешается применять обычные железобетонные покрытия. На пучинистых и просадочных грунтах обычные железобетонные покрытия могут применяться и для более низких категорий нормативных нагрузок. 3. Применение монолитных предварительно напряженных покрытий наиболее целесообразно на прямолинейных участках длиной не менее 500 м. 4. При расчетной интенсивности эксплуатации покрытия, не превышающего 1000 рулений расчетного самолета в год, бетонные покрытия могут применяться и для IV категории нормативных нагрузок.

Жесткие типы покрытий можно устраивать во всех дорожно-климатических районах на участках с гидрогеологическими условиями I и II типов по классификации аналогичной с дорожным строительством (СНиП 2.05.02-85). Жесткие покрытия в гидрогеологических условиях III типа не применяются.

При строительстве жестких покрытий на участках с III типом гидрогеологических условий предусматриваются соответствующие инженерные мероприятия (осушение, понижение уровня грунтовых вод, возведение насыпей) с целью приведения имеющихся условий к II типу.

Между плитами и основанием в монолитных жестких покрытиях предусматривают разделяющие прослойки из битуминизированной

 

бумаги, пергамина, пластмассовой пленки или песчано-битумной смеси. При неровностях основания, превышающих 20 мм, кроме того, должна устраиваться выравнивающая прослойка из пескоцемента или песчаного асфальта.

При устройстве покрытий из сборных предварительно напряженных железобетонных плит, укладываемых на все типы искусственных оснований, кроме песчаных, предусматривается выравнивающая прослойка из пескоцементной смеси толщиной 2-4 см. Разделяющая прослойка в этом случае не требуется.

При изменении температуры и влажности в монолитных жестких покрытиях возникают растягивающие, сжимающие и изгибающие усилия, вызывающие растрескивание плит. Для снижения этих условий и предотвращения растрескивания бетонные армобетонные и железобетонные покрытия разбивают на отдельные плиты продольными и поперечными швами. Как правило, продольные и поперечные швы покрытия в плите пересекаются под прямым углом. При разбивке швов вразбежку или смещении их в плане наблюдается образование трещин по направлению примыкающих поперечных швов в виде отколов углов. Такие разрушения появляются вследствие температурных деформаций и больших сил трения в швах.

Продольные и поперечные швы, образующие стандартные прямоугольные плиты, устраивают по типу швов сжатия или по типу швов расширения (рис. 9.5).

Рис. 9.5. Схема швов: а – шов сжатия; б – шов расширения; в – ложный шов; 1 – положение будущего рабочего шва; 2 – конструктивные швы

Швы сжатия дают возможность плитам сокращать свои размеры, т.е. сжиматься при усадке бетона в процессе его твердения и при понижении температуры. Швы расширения представляют собой зазоры между

 

соседними плитами, ширина которых обеспечивает свободу перемещения плит при расширении, при повышении температуры или при увеличении влажности бетона. Швы сжатия могут выполняться в виде ложных швов (см. рис. 39.39). Ложные швы создаются надрезом плит сверху виброножом на глубину 1/3 толщины плиты, в результате чего создается ослабленное сечение. Образовавшиеся трещины в этом сечении имеют правильную прямоугольную форму и обеспечивают работу шва по типу шва сжатия.

В местах перерыва работ при строительстве покрытий устраивают рабочие швы, выполняемые по типу швов расширения (см. рис. 9.5). При устройстве нестандартных плит в местах присоединения РД к ВПП, РД и МС и перронам устраивают конструктивные швы. Для предотвращения попадания через швы под покрытие воды швы заполняют водонепроницаемым и теплоустойчивым материалом. Заполняющий материал швов должен хорошо сцепляться с бетоном, быть морозостойким, упругим, вязким, не выдавливаться из шва и восстанавливаться после подвижки плит при температурных деформациях.

Расстояния между поперечными швами сжатия бетонных покрытий толщиной до 30 см принимают равным 25- кратной толщине, более 30 см – 7, 5 м. Для армобетонных и обычных железобетонных покрытий расстояния между поперечными швами сжатия l и поперечными швами расширения l1 принимают в зависимости от толщины плиты h:

h, см 16-22 24-26 28-30;

l, м 20 25 30;

l1, м 40 50 60.

В монолитных предварительно напряженных покрытиях швы сжатия не устраивают, а продольные швы расширения не устраивают в монолитных покрытиях.

Продольные швы сжатия всех типов покрытий, кроме бетонных, совмещают с технологическими. В бетонных покрытиях расстояние между продольными швами сжатия составляет около 3, 5-5, 0 м.

В сборных покрытиях устраивают температурные швы. Расстояние между температурными швами в продольном и поперечном направлениях принимаются равными 12-30 м при годовой амплитуде среднемесячных температур 20-40°С. Для промежуточных значений амплитуд расстояния между швами устанавливают интерполяцией.

 

 

 

Все швы ослабляют покрытие. При нагружении покрытий краевые и угловые участки не соединенных друг с другом плит оказываются более слабыми, чем центральные участки плит (рис. 9.6).

Рис. 9.6. Схема работы плит под нагрузкой: а – при передаче нагрузки на одну плиту; б – при передаче нагрузки на две смежные плиты

Из рис. 9.6 видно, что при передаче нагрузки одновременно на две смежные плиты каждая из них будет нести лишь половину всей нагрузки. Стыковые соединения как раз и предназначены для связи соседних плит с целью передачи нагрузки от колеса самолета с одной плиты на другую. Таким образом, стыковые соединения усиливают краевые и угловые участки плит.

К стыковым соединениям предъявляются два требования: они должны допускать горизонтальное перемещение плит при температурных деформациях плит (сжатие зимой, расширение летом); не должны допускать взаимные вертикальные поперечные смещения смежных плит при воздействии колес самолета, т.е. обеспечивать передачу части нагрузки с одной плиты на другую.

Во всех швах, как правило, предусматриваются стыковые соединения: штыревые, шпунтовые и т.п. В отдельных случаях вместо устройства стыковых соединений производится усилие краевых участков плит армированием или утолщение этих участков. В поперечных швах расширения рекомендуется устройство подшовных плит. Устройство швов без стыковых соединений или без усилений краевых участков допускается только для продольных швов монолитных предварительно напряженных покрытий с двухосным обжатием.

Схемы конструкций швов монолитных жестких покрытий приведены на рис. 9.7.

 

 

Толщина однослойных жестких покрытий, как правило, не должна превышать 30 см. Когда по расчету требуется большая толщина, необходимы более эффективные по несущей способности конструкции покрытий, прочные основания или двухслойные покрытия. Двухслойные покрытия устраивают методом наращивания по разделительной прослойке.

В качестве разделительной прослойки используется пергамин и другие рулонные материалы, уложенные в два слоя, или слой пескобитума толщиной 1, 0 см. Нижний слой двухслойного покрытия целесообразно делать из бетона, керамзита, песко- и шлакобетона.

В верхнем слое может применяться предварительно напряженный железобетон и армобетон. Взаимное расположение плит верхнего и нижнего слоя должно быть таким, чтобы по возможности избежать совпадения швов.

Рис. 9.7. Схемы конструкций швов (размеры в сантиметрах): 1 – плита покрытия; 2 – штырь;


3 – подшовная плита; 4 – дощатая прокладка; 5 – герметизирующий материал; 6 – деревянная пробка диаметром 10-15 мм; 7 – колпачок с упругой набивкой; 8 – рабочая арматура; 9 – нижняя прокладка

Участки обочин, непосредственно примыкающие к искусственным покрытиям ВПП, РД, МС и перронов и подвергающиеся воздействию газовых и воздушных струй от двигателей самолетов, а также возможным воздействиям аэродромных транспортных и эксплуатационных средств, укрепляются.

Требуемые толщины конструктивных слоев аэродромных покрытий определяются расчетом. Минимально допустимые толщины слоев покрытия составляют:

– для предварительно напряженного железобетона – 14 см;

– армобетона, бетона и обычного железобетона – 16 см.

Для устройства жестких покрытий следует применять тяжелый бетон, отвечающий требованиям ГОСТ 26633-85 «Бетон дорожный» и СНБ 5.03.01-02. Минимальные проектные марки бетона по прочности на сжатие исходят из нагрузок 40-25 МПа (С35/40 – С20/25) на растяжение при изгибе – 5, 0-3, 5 МПа соответственно для однослойных (верхних слоев двухслойных) покрытий и нижних слоев двухслойных покрытий.

Для армирования жестких аэродромных покрытий используют стержневую, проволочную и прядевую арматуру. Вид и класс арматуры устанавливают в зависимости от типа покрытия и назначения арматуры в покрытии. Обычно применяют арматуру классов S300-S400.

Далее кратко рассмотрим разновидности жестких покрытий аэродромов.

1. Бетонные покрытия имели наибольшее распространение в аэропортах бывшего СССР в прошлом веке. Простота конструкции и технологии устройства обеспечивали им широкое применение, несмотря на ряд существенных недостатков.

Поскольку плиты бетонных покрытий под воздействием эксплуатационных нагрузок и природных факторов работают на изгиб, растяжение и сжатие, то определяющими характеристиками аэродромного бетона являются предел прочности при изгибе и растяжении.

Это обстоятельство приводит к тому, что высокая прочность бетона при сжатии в конструкции покрытия не используется, а используется способность бетона воспринимать изгибающие и растягивающие усилия, которая в 8-12 раз ниже способности бетона воспринимать сжимающие усилия.

 

Бетонные покрытия устраивают, как правило, из прямоугольных плит при соотношении размеров сторон в пределах 1: 1-1: 1, 5. Наибольший размер стороны плиты не должен превышать 5 м. Таким образом, бетонное покрытие разделяется на отдельные плиты продольными и поперечными швами.

Конструкция шва имеет большое значение для несущей способности и долговечности покрытия. Опыт строительства и эксплуатации жестких покрытий показывает, что при неудачной конструкции швов именно они являются источником прогрессирующих разрушений всего покрытия в целом. Для заполнения швов в бетонных покрытиях применяются мастика «Изол» и резинобитумное вяжущее.

Толщина бетонных покрытий обычно изменяется в пределах 16-28 см (рассчитанных на V и VI категорию нормативных нагрузок).

2. Железобетонные покрытия. Основной особенностью жестких покрытий является их работа на изгиб, т.е. способность сопротивляться растягивающим напряжениям. Предел прочности бетона на растяжение значительно меньше, чем на сжатие, в результате чего бетонные покрытия имеют значительную толщину и небольшие размеры в плане. Для устранения этого недостатка в железобетонных покрытиях в бетон вводят стальную арматуру, которая воспринимает растягивающие напряжения.

Арматура располагается в зоне растяжения и принимает растягивающие усилия на себя. Арматуру в железобетонных покрытиях располагают в тех участках плиты, где возникают наибольшие растягивающие напряжения. Степень насыщения бетона арматурой характеризуется процентом армирования , где Fа – площадь поперечного сечения арматуры, м2; bho – площадь сечения плиты при высоте ho и ширине b, м2.

Оптимальное значение m для железобетонных покрытий составляет 0, 25-0, 40. При таком проценте армирования работа бетона в сжатых зонах плит и стальной арматуры в растянутых зонах наиболее эффективна.

Железобетонные покрытия так же, как и бетонные, разбиваются в плане продольными и поперечными швами на прямоугольные плиты. Ширина плит соответствует захвату бетоноукладочной машины, т.е. 7 м. Длину плит, т. е. расстояние между поперечными швами сжатия, принимают равной 20-30 м.

Увеличение размеров железобетонных плит в плане по сравнению с бетонными возможно благодаря тому, что растягивающие усилия воспринимает отдельная арматура, хорошо сопротивляющаяся изгибным напряжениям.

 


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-05-30; Просмотров: 1896; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.091 с.)
Главная | Случайная страница | Обратная связь