Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Внутреннее строение кристаллов и основные типы



Кристаллических решеток

 

Весьма тонкие современные методы исследования кристалличе­ского состояния вещества подтвердили, что частицы в кристаллах (атомы, молекулы, ионы) располагаются закономерно, образуя так называемую пространственную решетку кристалла. Внешняя геометрическая форма кристалла теснейшим образом связана с его внутренней структурой. В кристаллической решетке любого тела можно выделить определенную часть, которая носит название элементарной ячейки . Она представляет собой наименьший объем кристаллической решетки вещества, который точно отражает его химический состав и все особенности внутренней структуры дан­ного кристалла.

Важнейшей особенностью кристаллических образований явля­ется их способность самоограняться. Так, при выделении кристал­лического вещества из раствора или из расплавленной массы оно принимает геометрическую форму определенных кристаллов с явно выраженными плоскими гранями. При достаточно сильном ударе крупные кристаллы распадаются на ряд более мелких кристаллов, которые ограничены плоскостями, пересекающимися между собой под определенным углом. Эта способность кристаллов раскалы­ваться на слои по определенным плоскостям носит название спай­ности. Как известно, у аморфных тел это свойство отсутствует – поверхность излома их бывает неровной, раковистой.

Во внутреннем строении кристаллов выполняется принцип плотнейшей упаковки частиц, из которых состоит данный кристалл. Под действием сил взаимного притяжения частицы стремятся раз­меститься как можно ближе друг к другу (следует иметь в виду, что при чрезмерном сближении частиц в кристалле проявляются силы отталкивания). Поэтому наиболее энергетически выгодно такое взаимное расположение частиц в кристалле, которое, отвечает их наиболее плотной упаковке. Про­межутки между ними достигают минимума. При этом могут иметь место два случая.

1. Радиусы частиц, из которых состоит кристалл, равны или очень близки по величине. Этому условию отвечают два типа кри­сталлических решеток: гексагональная (рис. 3.6 а) и гранецентрированная кубическая (рис. 3.6 б). В таких решетках степень заполнения объема кристалла частицами составляет 74%. Это максимально плотная упаковка частиц одинакового или близких по величине радиусов. Подобный тип решеток свойствен большинству металлов.

2. Радиусы частиц, образующих кристаллы, сильно различаются. Принцип плотнейшей упаковки применим и в этом случае. Частицы, более крупных размеров в основном образуют кубическую или гексагональную сетку, а более мелкие частицы занимают сво­бодное пространство между ними. Этот тип решетки характерен для ионных кристаллов, поскольку разные ионы довольно резко отличаются друг от друга по радиусам; например, такова структу­ра кристалла хлорида натрия (рис. 3.6 в).

Рис. 3.6 Плотная упаковка одинаковых сфер

 

Следует отметить, что наряду с соотношением размеров частиц на структуру кристалла оказывают известное влияние и поляриза­ционные взаимодействия между ними.

С точки зрения структурных элементов и действующих между ними сил различают четыре типа кристаллов: молекулярные, атом­ные, ионные и металлические.

Молекулярная решетка. Молекулярные кристаллы имеют в углах пространственной решетки полярные или неполярные моле­кулы, связанные между собой силами Ван-дер-Ваальса. В качест­ве примера можно указать на твердую двуокись углерода (сухой лед), нафталин, лед. На рисунке 3.7 показано строение элементарной ячейки твердого диоксида углерода. Как видим, атомы углерода образуют кубическую решетку с центрированными гранями: атомы кислорода расположены по обе стороны от углерода на отрезках прямых, ориентированных определенным образом относительно ребер элементарной ячейки.

Поскольку силы взаимодействия между молекулами сравни­тельно слабы, то и вещества с данным типом решетки обладают малой твердостью, низкими температурами плавления и кипения. Растворы этих веществ, как правило, имеют сравнительно малую электрическую проводимость.

Атомная решетка. В узлах кристал­лических решеток этого типа располо­жены нейтральные атомы, определен­ным образом ориентирован-ные в про­странстве и связанные ковалентными связями. К числу веществ с атомной решеткой относятся, например, крем­ний, графит, алмаз, бор и др. Ковалентная связь, как известно, очень проч­ная, поэтому все связи в кристалле равноценны и очень прочны. Вещества, образованные атомными решетками, имеют большую твердость, высокую температуру плавления, малую раство­римость и малую летучесть.

 

Рис. 3.7. Элементарная ячей­ка кристалла СО2

На рисунке 3.8 приведены схемы строения атомных решеток алма­за и графита. В силу своеобразия структуры графит имеет очень малую прочность связи по плоскостям спайности кристалла, тогда как алмаз обладает огромной твердостью, поскольку все атомы углерода в его кристаллической решетке расположены друг от друга на одинаковом расстоянии.

Ионная решетка. Ионные кристаллы имеют в узлах пространст­венных решеток положительно и отрицательно заряженные ионы, которые связаны между собой электростатическими силами притя­жения разно-именных зарядов. Силы взаимодействия в ионных кри­сталлах весьма значительны, благодаря чему вещества с ионным типом решетки обладают высокой прочностью, высокими темпера­турами плавления и малой летучестью.

 

Рис. 3.8. Кристаллические решетки: а – алмаза; б – графита;

АБ – направление расположения плоскости спайности

 

Ионные решетки характерны для большинства неорганических соединений (соли, оксиды и другие классы соединений). Многие минералы также имеют ионное строение. Так, кристаллы, имеющие ионную решетку, как правило, хорошо растворимы в воде, а рас­творы их обладают высокой электрической проводимостью. В твер­дом виде ионные кристаллы не проводят электрический ток, так как в них электроны прочно удерживают-ся в атомных орбиталях отдельных ионов. В расплавленном состоянии кристаллические ве­щества проводят электрический ток, причем проводимость осуще­ствляется за счет переноса ионов. Электрическая проводимость расплавов является характерным свойством любых ионных струк­тур.

Металлическая решетка. Этот тип кристаллических решеток отличается от всех рассмотренных выше типов структур. Согласно современным представлениям, в узлах пространственной решетки типич-ных металлов в основном находятся положительно заряженные ионы, упакованные по принципу плотнейшей упаковки шаров, а в промежутках между ними находятся электроны в свободном состоянии. Последние образуют своеобразный «электронный газ», который как бы скрепляет одноименно заряженные ионы металла в плотнейшую кристаллическую решетку. С другой стороны, и са­ми электроны удерживаются катионами металла, в силу чего они не могут свободно покинуть кристаллическую решетку.

Рис. 3.9. Плоскостные схемы кристаллических решеток различ­ных типов

 

Именно наличием свободных электронов объясняется хорошая электриче­ская проводимость и теплопроводность, а также многие химические свойства металлов.

Металлы, как известно, от всех известных природных материа­лов отличаются высокой прочностью наряду с хорошей пластич­ностью как в холодном, так и в горячем состоянии. Высокая тем­пература плавления металлов указывает на значительную проч­ность металлической решетки и также объясняется наличием «электронного газа» в нем.

Под влиянием разности потенциалов электроны в металле начи­нают передвигаться в определенном направлении, что является причиной возникновения электрического тока.

На рисунке 3.9 приведены плоскостные схемы всех рассмотренных типов кристаллических решеток. Однако, принимая такую класси­фикацию кристаллов, всегда нужно иметь в виду, что характер разных связей даже в одном и том же кристалле может быть не одинаковым и классифи-кационные признаки не всегда четко и хо­рошо выражены. Наряду с кристаллами, относящимися к одному из четырех рассмотренных видов связи, существуют кристаллы с различными переходными и смешанными формами связи. Это, на­пример, целиком относится к кристаллогидратам, в которых встре­чаются одновременно ионный тип связи между катионами и анио­нами соли, ковалентная связь между атомами, входящими в состав аниона, а также полярные связи внутри молекул воды и ионоди-польная связь молекул с ионами.

Значительный интерес представляют кристаллы, образующие так называемые слоистые решетки, которые характерны для гра­фита, слюд и глинистых минералов.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-08-24; Просмотров: 1647; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.035 с.)
Главная | Случайная страница | Обратная связь