Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Расчет (подбор) подшипников качения на долговечность
Расчет на долговечность выполняют для подшипников, вращающихся с угловой скоростью. Не вращающиеся подшипники или медленно вращающиеся рассчитывают на статическую грузоподъемность. При проектировании машин подшипники качения не конструируют, а подбирают по таблицам каталога. Методы подбора подшипников качения стандартизованы. Выбор подшипника зависит от его назначения, направления и величины нагрузки, угловой скорости, режима работы, стоимости подшипника и особенностей монтажа. При выборе типа подшипника рекомендуется вначале рассмотреть возможность применения радиальных однорядных шарико-подшипников, как наиболее дешевых и простых в эксплуатации. Выбор других типов должен быть обоснован. Для малых нагрузок и больших скоростей вращения принимают шариковые однорядные подшипники легких серий. Подшипники более тяжелых серий обладают большей грузоподъемностью, но допускаемая угловая скорость их меньше. При одновременном действии радиальной и осевой нагрузок выясняют, достаточно ли одного или необходимо, чтобы каждая из нагрузок воспринималась отдельными подшипниками. При ударных или переменных нагрузках с большой кратковременной пиковой нагрузкой предпочтительны двухрядные роликовые подшипники. Следует иметь в виду, что шариковые подшипники менее требовательны к смазке, чем роликовые. Расчет радиальных и радиально-упорных подшипников основан на базовой динамической грузоподъемности подшипника, представляющей постоянную радиальную нагрузку, которую подшипник может воспринять при базовой долговечности, составляющей 106 оборотов. На основании теоретических и экспериментальных исследований установлено, что расчетная динамическая грузоподъемность подшипника где для радиальных и радиально-упорных подшипников: , для упорных подшипников: . Алгоритм расчета подшипников качения: 1. Определяют радиальные опорные реакции в вертикальной и горизонтальной плоскостях, а затем суммарные реакции, для каждой опоры: При определении опорных реакций радиально-упорных подшипников пролетом между опорами считают расстояние с учётом угла контакта. Тип подшипника выбирают исходя из условий работы, действующих нагрузок и намечаемой конструкции подшипникового узла. 2. По каталогу, ориентируясь на легкую серию, по диаметру цапфы подбирают подшипник и выписывают характеризующие его данные: а) для шарикового радиального и радиально-упорного с углом контакта а< 18° значения базовых динамической, и статической, радиальных грузоподъемностей; б) для шарикового радиально-упорного значения С, и по (или каталогу) значение коэффициента. 3. Для шариковых радиально-упорных и роликовых конических подшипников определяют для обеих опор осевые составляющие от радиальных сил, а затем по формулам вычисляют расчетные осевые силы (задаются расчетными коэффициентами в зависимости от условий работы). 4. Для шариковых радиальных и шариковых радиально-упорных подшипников определяют отношение и принимают значение коэффициента. Сравнивают отношение с коэффициентом и принимают значения коэффициентов. 5. Вычисляют эквивалентную динамическую нагрузку. 6. Определяют расчетную динамическую грузоподъемность подшипника и оценивают пригодность намеченного подшипника по условию Сr расч< Сr. Если расчетное значение больше значения базовой динамической грузоподъемности для принятого подшипника, то переходят к более тяжелой серии или принимают другой тип подшипника (например, вместо шарикового — роликовый) и расчет повторяют. В отдельных случаях увеличивают диаметр цапфы вала с целью перехода на следующий типоразмер подшипника. В этом случае в конструкцию вала вносят изменения. В отдельных случаях пригодность намеченного подшипника качения оценивают сопоставлением базовой и требуемой долговечности. В этом случае в п. 6 определяют базовую долговечность подшипника. Требуемая долговечность подшипников Lh определяется сроком службы машины между капитальными ремонтами. В общем машиностроении принимают Lh = 3000…50000 и более. Зубчатые передачи
Зубчатой передачей называется механизм, служащий для передачи вращательного движения с одного вала на другой и изменения частоты вращения посредством зубчатых колес и реек. Зубчатое колесо, сидящее на передающем вращение валу, называется ведущим, а на получающем вращение — ведомым. Меньшее из двух колес сопряженной пары называют шестерней; большее — колесом; термин «зубчатое колесо» относится к обеим деталям передачи. Зубчатые передачи представляют собой наиболее распространенный вид передач в современном машиностроении. Они очень надежны в работе, обеспечивают постоянство передаточного числа, компактны, имеют высокий КПД, просты в эксплуатации, долговечны и могут передавать любую мощность (до 36 тыс. кВт). К недостаткам зубчатых передач следует отнести: необходимость высокой точности изготовления и монтажа, шум при работе со значительными скоростями, невозможность бесступенчатого изменения передаточного числа. В связи с разнообразием условий эксплуатации формы элементов зубчатых зацеплений и конструкции передач весьма разнообразны.
Эвольвентное зацепление
Боковые грани зубьев, соприкасающиеся друг с другом во время вращения колес, имеют специальную криволинейную форму, называемую профилем зуба. Наиболее распространенным в машиностроении является эвольвентный профиль(рис. 16.1). Рис. 16.1 – Эвольвентный профиль зубчатого колеса.
Придание профилям зубьев зубчатых зацеплений таких очертаний не является случайностью. Чтобы зубья двух колес, находящихся в зацеплении, могли плавно перекатываться один по другому, необходимо было выбрать такой профиль для зубьев, при котором не происходило бы перекосов и защемления головки одного зуба во впадине другого. На рис. 16.2 изображена пара зубчатых колес, находящихся в зацеплении. Линия, соединяющая центры колес О1 и О2называется линией центров или межосевым расстоянием — aw. Рис. 16.2 – Пара колес в зацеплении
Точка Р касания начальных окружностей dW1 и dW2 — полюс — всегда лежит на линии центров. Начальными называются окружности, касающиеся друг друга в полюсе зацепления, имеющие общие с зубчатыми колесами центры и перекатывающиеся одна по другой без скольжения. Если проследить за движением пары зубьев двух колес с момента, когда они впервые коснутся друг друга до момента, когда они выйдут из зацепления, то окажется, что все точки касания их в процессе движения будут лежать на одной прямой NN. Прямая NN, проходящая через полюс зацепление Р и касательная к основным окружностям db1, db2, двух сопряженных колес, называется линией зацепления. Отрезок ga линии зацепления, отсекаемый окружностями выступов сопряженных колес, — активная часть линии зацепления, определяющая начало и конец зацепления пары сопряженных зубьев. Линия зацепления представляет собой линию давления сопряженных профилей зубьев в процессе эксплуатации зубчатой передачи. Угол α между линией зацепления и перпендикуляром к линии центров O1О2 называется углом зацепления. В основу профилирования эвольвентных зубьев и инструмента для их нарезания положен стандартный по ГОСТ 13755-81 исходный контур так называемой рейки, равный 20°. Во время работы цилиндрической прямозубой передачи сила давления Рn ведущей шестерни O1 в начале зацепления передается ножкой зуба на сопряженную боковую поверхность (контактную линию) головки ведомого колеса О2. Чем больше пара зубьев одновременно находится в зацеплении, тем более плавно работает передача, тем меньшую нагрузку воспринимает на себя каждый зуб. Стремление сделать зубчатую передачу более компактной вызывает необходимость применять зубчатые колеса с возможно меньшим числом зубьев. Изменение количества зубьев зубчатого колеса влияет на их форму. При увеличении числа зубьев до бесконечности колесо превращается в рейку и зуб приобретает прямолинейное очертание. С уменьшением числа зубьев одновременно уменьшается толщина зуба у основания и вершины, а также увеличивается кривизна эвольвентного профиля, что приводит к уменьшению прочности зуба на изгиб. При уменьшении числа зубьев, когда z < zmim, происходит так называемое подрезание зубьев, то есть явление, когда зубья большого колеса при вращении заходят в область ножки меньшего колеса (см. заштрихованная площадь на рис. 16.3), тем самым ослабляя зуб в самом опасном сечении, увеличивая износ зубьев и снижая КПД передачи. Рис. 16.3 – Подрезание зубьев
На практике подрезку зубьев предотвращают прежде всего выбором соответствующего числа зубьев. Наименьшее число зубьев (zmin), при котором еще не происходит подрезание, рекомендуется выбирать от 35 до 40 при равном 15° и от 18 до 25 при α равном 20°. В отдельных случаях приходится выполнять передачу с числом зубьев меньшим, чем рекомендуется, при этом производят исправление, или, как говорят, корригирование формы зубьев. Один из таких способов заключается в изменении высоты головки и ножки зуба до ha = 0, 8m; hf = m. Этот способ исключает подрезку, но увеличивает износ зубьев.
Популярное:
|
Последнее изменение этой страницы: 2017-03-03; Просмотров: 730; Нарушение авторского права страницы