Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Расчет (подбор) подшипников качения на долговечность



 

Расчет на долговечность выполняют для подшипников, вращающихся с угловой скоростью. Не вращающиеся подшипники или медленно вращающиеся рассчитывают на статическую грузоподъемность.

При проектировании машин подшипники качения не конструируют, а подбирают по таблицам каталога. Методы подбора подшипников качения стандартизованы.

Выбор подшипника зависит от его назначения, направления и величины нагрузки, угловой скорости, режима работы, стоимости подшипника и особенностей монтажа. При выборе типа подшипника рекомендуется вначале рассмотреть возможность применения радиальных однорядных шарико-подшипников, как наиболее дешевых и простых в эксплуатации. Выбор других типов должен быть обоснован.

Для малых нагрузок и больших скоростей вращения принимают шариковые однорядные подшипники легких серий. Подшипники более тяжелых серий обладают большей грузоподъемностью, но допускаемая угловая скорость их меньше. При одновременном действии радиальной и осевой нагрузок выясняют, достаточно ли одного или необходимо, чтобы каждая из нагрузок воспринималась отдельными подшипниками.

При ударных или переменных нагрузках с большой кратковременной пиковой нагрузкой предпочтительны двухрядные роликовые подшипники. Следует иметь в виду, что шариковые подшипники менее требовательны к смазке, чем роликовые.

Расчет радиальных и радиально-упорных подшипников основан на базовой динамической грузоподъемности подшипника, представляющей постоянную радиальную нагрузку, которую подшипник может воспринять при базовой долговечности, составляющей 106 оборотов.

На основании теоретических и экспериментальных исследований установлено, что расчетная динамическая грузоподъемность подшипника

где для радиальных и радиально-упорных подшипников: , для упорных подшипников: .

Алгоритм расчета подшипников качения:

1. Определяют радиальные опорные реакции в вертикальной и горизонтальной плоскостях, а затем суммарные реакции, для каждой опоры:

При определении опорных реакций радиально-упорных подшипников пролетом между опорами считают расстояние с учётом угла контакта. Тип подшипника выбирают исходя из условий работы, действующих нагрузок и намечаемой конструкции подшипникового узла.

2. По каталогу, ориентируясь на легкую серию, по диаметру цапфы подбирают подшипник и выписывают характеризующие его данные:

а) для шарикового радиального и радиально-упорного с углом контакта а< 18° значения базовых динамической, и статической, радиальных грузоподъемностей;

б) для шарикового радиально-упорного значения С, и по (или каталогу) значение коэффициента.

3. Для шариковых радиально-упорных и роликовых конических подшипников определяют для обеих опор осевые составляющие от радиальных сил, а затем по формулам вычисляют расчетные осевые силы (задаются расчетными коэффициентами в зависимости от условий работы).

4. Для шариковых радиальных и шариковых радиально-упорных подшипников определяют отношение и принимают значение коэффициента. Сравнивают отношение с коэффициентом и принимают значения коэффициентов.

5. Вычисляют эквивалентную динамическую нагрузку.

6. Определяют расчетную динамическую грузоподъемность подшипника и оценивают пригодность намеченного подшипника по условию Сr расч< Сr.

Если расчетное значение больше значения базовой динамической грузоподъемности для принятого подшипника, то переходят к более тяжелой серии или принимают другой тип подшипника (например, вместо шарикового — роликовый) и расчет повторяют. В отдельных случаях увеличивают диаметр цапфы вала с целью перехода на следующий типоразмер подшипника. В этом случае в конструкцию вала вносят изменения. В отдельных случаях пригодность намеченного подшипника качения оценивают сопоставлением базовой и требуемой долговечности.

В этом случае в п. 6 определяют базовую долговечность подшипника.

Требуемая долговечность подшипников Lh определяется сроком службы машины между капитальными ремонтами. В общем машиностроении принимают Lh = 3000…50000 и более.

Зубчатые передачи

 

Зубчатой передачей называется меха­низм, служащий для передачи вращательного движения с одного вала на другой и изменения частоты вращения посредством зубчатых колес и реек.

Зубчатое колесо, сидящее на передающем вращение валу, называется веду­щим, а на получающем вращение — ведомым. Меньшее из двух колес со­пряженной пары называют шестерней; большее — колесом; тер­мин «зубчатое колесо» относится к обеим деталям передачи.

Зубчатые передачи представляют собой наиболее распространенный вид передач в современном машиностроении. Они очень надежны в работе, обеспечивают постоянство передаточного числа, компактны, имеют высо­кий КПД, просты в эксплуатации, долговечны и могут передавать любую мощность (до 36 тыс. кВт).

К недостаткам зубчатых передач следует отнести: необходимость высо­кой точности изготовления и монтажа, шум при работе со значительными скоростями, невозможность бесступенчатого изменения передаточного числа.

В связи с разнообразием условий эксплуатации формы элементов зубча­тых зацеплений и конструкции передач весьма разнообразны.

 

Эвольвентное зацепление

 

Боковые грани зубьев, соприкасаю­щиеся друг с другом во время враще­ния колес, имеют специальную кри­волинейную форму, называемую про­филем зуба. Наиболее распространен­ным в машиностроении является эвольвентный профиль(рис. 16.1).

Рис. 16.1 – Эвольвентный профиль зубчатого колеса.

 

Придание профилям зубьев зубча­тых зацеплений таких очертаний не является случайностью. Чтобы зубья двух колес, находящихся в зацепле­нии, могли плавно перекатываться один по другому, необходимо было вы­брать такой профиль для зубьев, при котором не происходило бы перекосов и защемления головки одного зуба во впадине другого.

На рис. 16.2 изображена пара зубчатых колес, находящихся в зацепле­нии. Линия, соединяющая центры колес О1 и О2называется линией центров или межосевым расстоянием — aw.

Рис. 16.2 – Пара колес в зацеплении

 

Точка Р касания начальных окружностей dW1 и dW2 — полюс — все­гда лежит на линии центров. Начальными называются окружнос­ти, касающиеся друг друга в полюсе зацепления, имеющие общие с зуб­чатыми колесами центры и перекатывающиеся одна по другой без сколь­жения.

Если проследить за движением пары зубьев двух колес с момен­та, когда они впервые коснутся друг друга до момента, когда они выйдут из зацепления, то ока­жется, что все точки касания их в процессе движения будут лежать на одной прямой NN. Прямая NN, проходящая через полюс за­цепление Р и касательная к ос­новным окружностям db1, db2, двух сопряженных колес, назы­вается линией зацепле­ния. Отрезок ga линии зацепле­ния, отсекаемый окружностями выступов сопряженных колес, — активная часть линии зацепле­ния, определяющая начало и ко­нец зацепления пары сопряжен­ных зубьев.

Линия зацепления представ­ляет собой линию давления со­пряженных профилей зубьев в процессе эксплуатации зубча­той передачи.

Угол α между линией зацеп­ления и перпендикуляром к ли­нии центров O1О2 называется углом зацепления. В основу профилирования эвольвентных зубьев и инструмента для их на­резания положен стандартный по ГОСТ 13755-81 исходный контур так называемой рейки, равный 20°.

Во время работы цилиндри­ческой прямозубой передачи сила давления Рn ведущей шес­терни O1 в начале зацепления передается ножкой зуба на со­пряженную боковую поверх­ность (контактную линию) головки ведомого колеса О2. Чем больше пара зубьев одновременно находится в зацеплении, тем более плавно работает передача, тем меньшую нагрузку воспринимает на себя каждый зуб.

Стремление сделать зубчатую передачу более компактной вызывает не­обходимость применять зубчатые колеса с возможно меньшим числом зубь­ев. Изменение количества зубьев зубчатого колеса влияет на их форму. При увеличе­нии числа зубьев до бесконечно­сти колесо превращается в рейку и зуб приобретает пря­молинейное очертание. С умень­шением числа зубьев одновре­менно уменьшается толщина зу­ба у основания и вершины, а так­же увеличивается кривизна эвольвентного профиля, что приводит к уменьшению проч­ности зуба на изгиб. При умень­шении числа зубьев, когда z < zmim, происходит так называе­мое подрезание зубьев, то есть явление, когда зубья большого колеса при вращении заходят в область ножки меньшего колеса (см. заштрихованная площадь на рис. 16.3), тем самым ослабляя зуб в самом опасном сечении, увеличивая износ зубьев и снижая КПД передачи.

Рис. 16.3 – Подрезание зубьев

 

На практике подрезку зубьев предотвращают прежде всего выбором со­ответствующего числа зубьев. Наименьшее число зубьев (zmin), при кото­ром еще не происходит подрезание, рекомендуется выбирать от 35 до 40 при равном 15° и от 18 до 25 при α равном 20°.

В отдельных случаях приходится выполнять передачу с числом зубьев меньшим, чем рекомендуется, при этом производят исправление, или, как говорят, корригирование формы зубьев. Один из таких способов заключает­ся в изменении высоты головки и ножки зуба до ha = 0, 8m; hf = m. Этот спо­соб исключает подрезку, но увеличивает износ зубьев.

 


Поделиться:



Популярное:

Последнее изменение этой страницы: 2017-03-03; Просмотров: 673; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.019 с.)
Главная | Случайная страница | Обратная связь