Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Имитация функционирования системы



Предположим, исследуется вычислительная система (ВС), (см. рис.4.3) состоящая из процессора 1 с основной памятью, устройство вода, принтер и дисплея 3.

Через устройство 4 поступает поток заданий Х1. Процессор обрабатывает задания, и результаты выдаёт на принтер. Одновременно с этим ВС используется, например, как информационно-справочная система. Оператор-пользователь, работающий за дисплеем, посылает в систему запросы Х2, которые обрабатываются процессором и ответы выводятся на экран дисплея. Процессор работает в 2-х программном режиме: в одном разделе обрабатываются задания Х1, в другом, с более высоким относительным приоритетом запросы Х2. Представим данную ВС в упрощённом варианте в виде стохастической сети из 4-х СМО. Потоки заданий и запросы будем называть потоками заявок. Считаем потоки Х1 и Х2 независимыми. Известны временные функциональные периоды следования заявок t1 и t2 и длительность обслуживания Т, T заявок в компьютерном устройстве (см. рис.10). Требуется определить времена загрузки каждого устройства и времена реакции по каждому из потоков.


Рис.4.3. Упрощённая схема моделируемой системы.

 

Вначале определяется момент поступления в систему 1-ой заявки потока Х1 по результатам случайного испытания в соответствии с временным периодом следования заявок.

 


 

Рис. 4.4. Временная диаграмма функционирования ВС.

 

На рисунке 4.4. это момент времени t1=0+t11 (здесь и далее верхний индекс обозначает порядковый номер заявки данного потока). То же самое делается для потока Х2. На рис.10 момент поступления 1-ой заявки потока Х2 t2=0+t21. Затем находится минимальное время, т.е. наиболее раннее событие. В примере это время t1. Для 1-ой заявки потока Х1определяется время обслуживания устройством ввода перфокарт Т114 методом случайного испытания и отмечается момент окончания обслуживания t4=t1+ Т114. На рис. 4.4 показан переход устройства 4 в состояние " занято". Одновременно определяется момент поступления следующей заявки потока Х1: t12=t1+t12. Следующее минимальное время это момент поступления заявки потока Х2 - t2. Для этой заявки находится время обслуживания на дисплее Т123 и отслеживается время окончания обслуживания t3=t2+ Т123. Определяется момент поступления второй заявки потока Х2: t7=t2+t22. Снова выбирается минимальное время — это t3. В этот момент заявка потока Х2 начинает обрабатываться процессором. По результату случайного испытания определяется время её обслуживания T121 и отмечается момент t5=t3+ T121 окончания обслуживания. Следующее минимальное время t4 - момент завершения обслуживания заявки потока Х1 устройством 4. С этого момента заявка может начать обрабатываться процессором, но он занят обслуживанием потока Х2. Тогда заявка потока Х1 переходит в состояние ожидания, становиться в очередь. В следующий момент времени t5 освобождается процессор. С этого момента процессор начинает обрабатывать заявку потока Х1, а заявка потока Х2 переходит на обслуживание дисплеем, т.е. ответ на запрос пользователя передаётся из основной памяти в буферный накопитель дисплея. Далее определяются соответствующие времена обслуживания: T111 и T123 и отмечаются моменты времени t9=t5+ T111 и t6=t5+ T123. В момент t6 полностью завершается обработка первой заявки потока Х2. По разности времени t6 и t2 вычисляется время реакции по этой заявке u12= t6- t2. Следующий минимальный момент t7 - это наступление 2-ой заявки потока Х2. Определяет время поступления очередной заявки этого потока t15= t7+t23. Затем вычисляется время обслуживания 2-ой заявки на дисплее T223 и отмечается момент t8=t7+ T223, после чего заявка становится в очередь, т.к. процессор занят. Эта заявка поступит на обслуживание в процессор только после его освобождения в момент t9. В этот момент заявка потока Х1 начинает обслуживаться в принтере. Определяются времена обслуживания Т221 и Т112 по результатам случайных испытаний и отмечаются моменты окончания обслуживания t11= t9223 и t10= t9112. В момент времени t10 завершается полное обслуживание 1-ой заявки потока Х1. Разность между этим моментом и моментом времени t1 даёт 1-ое значение времени реакции по потоку Х1 u11= t10- t1.

Указанные процедуры выполняются до истечения времени моделирования. В результате получается некоторое количество (выборка) случайных значений времени реакции (u1) и (u2) по 1-ому и 2-ому потокам. По этим значениям могут быть определены эмпирические функции распределения и вычислены количественные вероятностные характеристики времени реакции. В процессе моделирования можно суммировать продолжительности занятости каждого устройства обслуживанием всех потоков. Например, на рис. 4.4 занятость процессора 1 выделена заштрихованными ступеньками. Если результаты суммирования разделить на время моделирования, то получатся коэффициенты загрузки устройств.

Можно определить время ожидания заявок в очереди, обслуженных системой, среднюю и максимальную длину очереди заявок к каждому устройству, требуемая ёмкость памяти и др.

Имитация даёт возможность учесть характеристики надежности ВС. В частности, если известны времена наработки на отказ, и восстановления всех входящих в систему устройств, то определяются моменты возникновения отказов устройств в период моделирования и моменты восстановления. Если устройство отказало, то возможны решения: снятие заявки без возврата; помещение заявки в очередь и дообслуживание после восстановления; поступление на повторное обслуживание из очереди.


Поделиться:



Популярное:

  1. I) Получение передаточных функций разомкнутой и замкнутой системы, по возмущению относительно выходной величины, по задающему воздействию относительно рассогласования .
  2. I. РАЗВИТИИ ЛЕКСИЧЕСКОЙ СИСТЕМЫ ЯЗЫКА У ДЕТЕЙ С ОБЩИМ НЕДОРАЗВИТИЕМ РЕЧИ
  3. II. О ФИЛОСОФСКОМ АНАЛИЗЕ СИСТЕМЫ МАКАРЕНКО
  4. V) Построение переходного процесса исходной замкнутой системы и определение ее прямых показателей качества
  5. А. Разомкнутые системы скалярного частотного управления асинхронными двигателями .
  6. АВИАЦИОННЫЕ ПРИБОРЫ И СИСТЕМЫ
  7. Автоматизированные информационно управляющие системы сортировочных станций
  8. Автоматизированные системы диспетчерского управления
  9. Автоматическая телефонная станция квазиэлектронной системы «КВАНТ»
  10. Агрегатные комплексы и системы технических средств автоматизации ГСП
  11. Алгебраическая сумма всех электрических зарядов любой замкнутой системы остается неизменной (какие бы процессы ни происходили внутри этой системы).
  12. Алгоритм упорядочивания системы.


Последнее изменение этой страницы: 2017-03-03; Просмотров: 574; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.011 с.)
Главная | Случайная страница | Обратная связь