Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Уравнение прямой в отрезках.
Если в общем уравнении прямой Ах + Ву + С = 0 С ¹ 0, то, разделив на –С, получим: или , где
Геометрический смысл коэффициентов в том, что коэффициент а является координатой точки пересечения прямой с осью Ох, а b – координатой точки пересечения прямой с осью Оу.
Пример. Задано общее уравнение прямой х – у + 1 = 0. Найти уравнение этой прямой в отрезках.
С = 1, , а = -1, b = 1.
Нормальное уравнение прямой.
Если обе части уравнения Ах + Ву + С = 0 разделить на число , которое называется нормирующем множителем, то получим
xcosj + ysinj - p = 0 – нормальное уравнение прямой.
Знак ± нормирующего множителя надо выбирать так, чтобы m× С < 0. р – длина перпендикуляра, опущенного из начала координат на прямую, а j - угол, образованный этим перпендикуляром с положительным направлением оси Ох.
Пример. Дано общее уравнение прямой 12х – 5у – 65 = 0. Требуется написать различные типы уравнений этой прямой. уравнение этой прямой в отрезках: уравнение этой прямой с угловым коэффициентом: (делим на 5) нормальное уравнение прямой:
; cosj = 12/13; sinj = -5/13; p = 5. Cледует отметить, что не каждую прямую можно представить уравнением в отрезках, например, прямые, параллельные осям или проходящие через начало координат.
Пример. Прямая отсекает на координатных осях равные положительные отрезки. Составить уравнение прямой, если площадь треугольника, образованного этими отрезками равна 8 см2.
Уравнение прямой имеет вид: , a = b = 1; ab/2 = 8; a = 4; -4. a = -4 не подходит по условию задачи. Итого: или х + у – 4 = 0.
Пример. Составить уравнение прямой, проходящей через точку А(-2, -3) и начало координат.
Уравнение прямой имеет вид: , где х1 = у1 = 0; x2 = -2; y2 = -3.
Уравнение прямой, проходящей через данную точку Перпендикулярно данной прямой. Определение. Прямая, проходящая через точку М1(х1, у1) и перпендикулярная к прямой у = kx + b представляется уравнением:
Угол между прямыми на плоскости. Определение. Если заданы две прямые y = k1x + b1, y = k2x + b2, то острый угол между этими прямыми будет определяться как . Две прямые параллельны, если k1 = k2. Две прямые перпендикулярны, если k1 = -1/k2.
Теорема. Прямые Ах + Ву + С = 0 и А1х + В1у + С1 = 0 параллельны, когда пропорциональны коэффициенты А1 = lА, В1 = lВ. Если еще и С1 = lС, то прямые совпадают. Координаты точки пересечения двух прямых находятся как решение системы уравнений этих прямых.
Расстояние от точки до прямой. Теорема. Если задана точка М(х0, у0), то расстояние до прямой Ах + Ву + С =0 определяется как .
Доказательство. Пусть точка М1(х1, у1) – основание перпендикуляра, опущенного из точки М на заданную прямую. Тогда расстояние между точками М и М1: (1) Координаты x1 и у1 могут быть найдены как решение системы уравнений: Второе уравнение системы – это уравнение прямой, проходящей через заданную точку М0 перпендикулярно заданной прямой. Если преобразовать первое уравнение системы к виду: A(x – x0) + B(y – y0) + Ax0 + By0 + C = 0, то, решая, получим: Подставляя эти выражения в уравнение (1), находим: .
Теорема доказана.
Пример. Определить угол между прямыми: y = -3x + 7; y = 2x + 1.
k1 = -3; k2 = 2 tgj = ; j = p/4.
Пример. Показать, что прямые 3х – 5у + 7 = 0 и 10х + 6у – 3 = 0 перпендикулярны.
Находим: k1 = 3/5, k2 = -5/3, k1k2 = -1, следовательно, прямые перпендикулярны.
Пример. Даны вершины треугольника А(0; 1), B(6; 5), C(12; -1). Найти уравнение высоты, проведенной из вершины С.
Находим уравнение стороны АВ: ; 4x = 6y – 6; 2x – 3y + 3 = 0; Искомое уравнение высоты имеет вид: Ax + By + C = 0 или y = kx + b. k = . Тогда y = . Т.к. высота проходит через точку С, то ее координаты удовлетворяют данному уравнению: откуда b = 17. Итого: . Ответ: 3x + 2y – 34 = 0.
Кривые второго порядка.
Кривая второго порядка может быть задана уравнением Ах2 + 2Вху + Су2 + 2Dx + 2Ey + F = 0.
Существует система координат (не обязательно декартова прямоугольная), в которой данное уравнение может быть представлено в одном из видов, приведенных ниже.
1) - уравнение эллипса. 2) - уравнение “мнимого” эллипса. 3) - уравнение гиперболы. 4) a2x2 – c2y2 = 0 – уравнение двух пересекающихся прямых. 5) y2 = 2px – уравнение параболы. 6) y2 – a2 = 0 – уравнение двух параллельных прямых. 7) y2 + a2 = 0 – уравнение двух “мнимых” параллельных прямых. 8) y2 = 0 – пара совпадающих прямых. 9) (x – a)2 + (y – b)2 = R2 – уравнение окружности.
Окружность.
В окружности (x – a)2 + (y – b)2 = R2 центр имеет координаты (a; b).
Пример. Найти координаты центра и радиус окружности, если ее уравнение задано в виде: 2x2 + 2y2 – 8x + 5y – 4 = 0.
Для нахождения координат центра и радиуса окружности данное уравнение необходимо привести к виду, указанному выше в п.9. Для этого выделим полные квадраты: x2 + y2 – 4x + 2, 5y – 2 = 0 x2 – 4x + 4 –4 + y2 + 2, 5y + 25/16 – 25/16 – 2 = 0 (x – 2)2 + (y + 5/4)2 – 25/16 – 6 = 0 (x – 2)2 + (y + 5/4)2 = 121/16
Отсюда находим О(2; -5/4); R = 11/4.
Эллипс. Определение. Эллипсом называется кривая, заданная уравнением .
Определение. Фокусами называются такие две точки, сумма расстояний от которых до любой точки эллипса есть постоянная величина.
у
М r1 r2 F1 O F2 х
F1, F2 – фокусы. F1 = (c; 0); F2(-c; 0) с – половина расстояния между фокусами; a – большая полуось; b – малая полуось.
Теорема. Фокусное расстояние и полуоси эллипса связаны соотношением: a2 = b2 + c2.
Доказательство: В случае, если точка М находится на пересечении эллипса с вертикальной осью, r1 + r2 = 2 (по теореме Пифагора). В случае, если точка М находится на пересечении эллипса с горизонтальной осью, r1 + r2 = a – c + a + c. Т.к. по определению сумма r1 + r2 – постоянная величина, то, приравнивая, получаем:
a2 = b2 + c2 r1 + r2 = 2a.
Определение. Форма эллипса определяется характеристикой, которая является отношением фокусного расстояния к большей оси и называется эксцентриситетом. е = с/a. Т.к. с < a, то е < 1.
Определение. Величина k = b/a называется коэффициентом сжатия эллипса, а величина 1 – k = (a – b)/a называется сжатием эллипса. Коэффициент сжатия и эксцентриситет связаны соотношением: k2 = 1 – e2.
Если a = b (c = 0, e = 0, фокусы сливаются), то эллипс превращается в окружность. Если для точки М(х1, у1) выполняется условие: , то она находится внутри эллипса, а если , то точка находится вне эллипса. Теорема. Для произвольной точки М(х, у), принадлежащей эллипсу верны соотношения: r1 = a – ex, r2 = a + ex.
Доказательство. Выше было показано, что r1 + r2 = 2a. Кроме того, из геометрических соображений можно записать: После возведения в квадрат и приведения подобных слагаемых: Аналогично доказывается, что r2 = a + ex. Теорема доказана.
С эллипсом связаны две прямые, называемые директрисами. Их уравнения:
x = a/e; x = -a/e.
Теорема. Для того, чтобы точка лежала на эллипсе, необходимо и достаточно, чтобы отношение расстояния до фокуса к расстоянию до соответствующей директрисы равнялось эксцентриситету е.
Пример. Составить уравнение прямой, проходящей через левый фокус и нижнюю вершину эллипса, заданного уравнением:
1) Координаты нижней вершины: x = 0; y2 = 16; y = -4. 2) Координаты левого фокуса: c2 = a2 – b2 = 25 – 16 = 9; c = 3; F2(-3; 0). 3) Уравнение прямой, проходящей через две точки:
Пример. Составить уравнение эллипса, если его фокусы F1(0; 0), F2(1; 1), большая ось равна 2.
Уравнение эллипса имеет вид: . Расстояние между фокусами: 2c = , таким образом, a2 – b2 = c2 = ½ по условию 2а = 2, следовательно а = 1, b = Итого: .
Гипербола.
Определение. Гиперболой называется множество точек плоскости, для которых модуль разности расстояний от двух данных точек, называемых фокусами есть величина постоянная, меньшая расстояния между фокусами. y
M(x, y) b r1 r2 x
F1 a F2
c
По определению ï r1 – r2ï = 2a. F1, F2 – фокусы гиперболы. F1F2 = 2c. Выберем на гиперболе произвольную точку М(х, у). Тогда: обозначим с2 – а2 = b2 (геометрически эта величина – меньшая полуось)
Получили каноническое уравнение гиперболы. Гипербола симметрична относительно середины отрезка, соединяющего фокусы и относительно осей координат. Ось 2а называется действительной осью гиперболы. Ось 2b называется мнимой осью гиперболы. Гипербола имеет две асимптоты, уравнения которых Определение. Отношение называется эксцентриситетом гиперболы, где с – половина расстояния между фокусами, а – действительная полуось. С учетом того, что с2 – а2 = b2: Если а = b, e = , то гипербола называется равнобочной (равносторонней).
Определение. Две прямые, перпендикулярные действительной оси гиперболы и расположенные симметрично относительно центра на расстоянии a/e от него, называются директрисами гиперболы. Их уравнения: . Теорема. Если r – расстояние от произвольной точки М гиперболы до какого- либо фокуса, d – расстояние от той же точки до соответствующей этому фокусу директрисы, то отношение r/d – величина постоянная, равная эксцентриситету. Доказательство. Изобразим схематично гиперболу. y a/e d
M(x, y)
r1
0 a F1 x
OF1 = c Из очевидных геометрических соотношений можно записать: a/e + d = x, следовательно d = x – a/e. (x – c)2 + y2 = r2 Из канонического уравнения: , с учетом b2 = c2 – a2: Тогда т.к. с/a = e, то r = ex – a. Итого: . Для левой ветви гиперболы доказательство аналогично. Теорема доказана.
Пример. Найти уравнение гиперболы, вершины и фокусы которой находятся в соответствующих вершинах и фокусах эллипса . Для эллипса: c2 = a2 – b2. Для гиперболы: c2 = a2 + b2.
Уравнение гиперболы: .
Пример. Составить уравнение гиперболы, если ее эксцентриситет равен 2, а фокусы совпадают с фокусами эллипса с уравнением Находим фокусное расстояние c2 = 25 – 9 = 16. Для гиперболы: c2 = a2 + b2 = 16, e = c/a = 2; c = 2a; c2 = 4a2; a2 = 4; b2 = 16 – 4 = 12.
Итого: - искомое уравнение гиперболы.
Парабола.
Определение. Параболой называется множество точек плоскости, каждая из которых находится на одинаковом расстоянии от данной точки, называемой фокусом, и от данной прямой, называемой директрисой и не проходящей через фокус.
Расположим начало координат посередине между фокусом и директрисой.
у А М(х, у)
О F x p/2 p/2
Величина р (расстояние от фокуса до директрисы) называется параметром параболы. Выведем каноническое уравнение параболы. Из геометрических соотношений: AM = MF; AM = x + p/2; MF2 = y2 + (x – p/2)2 (x + p/2)2 = y2 + (x – p/2)2 x2 +xp + p2/4 = y2 + x2 – xp + p2/4 y2 = 2px
Уравнение директрисы: x = -p/2.
Пример. На параболе у2 = 8х найти точку, расстояние которой от директрисы равно 4.
Из уравнения параболы получаем, что р = 4. r = x + p/2 = 4; следовательно: x = 2; y2 = 16; y = ±4. Искомые точки: M1(2; 4), M2(2; -4).
Пример. Уравнение кривой в полярной системе координат имеет вид: . Найти уравнение кривой в декартовой прямоугольной системе координат, определит тип кривой, найти фокусы и эксцентриситет. Схематично построить кривую.
Воспользуемся связью декартовой прямоугольной и полярной системы координат: ; Получили каноническое уравнение эллипса. Из уравнения видно, что центр эллипса сдвинут вдоль оси Ох на 1/2 вправо, большая полуось a равна 3/2, меньшая полуось b равна , половина расстояния между фокусами равно с = = 1/2. Эксцентриситет равен е = с/a = 1/3. Фокусы F1(0; 0) и F2(1; 0).
y
F1 F2 -1 0 ½ 1 2 x
-
Пример. Уравнение кривой в полярной системе координат имеет вид: . Найти уравнение кривой в декартовой прямоугольной системе координат, определит тип кривой, найти фокусы и эксцентриситет. Схематично построить кривую.
Подставим в заданное уравнение формулы, связывающие полярную и декартову прямоугольную системы координат.
Получили каноническое уравнение гиперболы. Из уравнения видно, что гипербола сдвинута вдоль оси Ох на 5 влево, большая полуось а равна 4, меньшая полуось b равна 3, откуда получаем c2 = a2 + b2; c = 5; e = c/a = 5/4. Фокусы F1(-10; 0), F2(0; 0).
Построим график этой гиперболы.
y
F1 -9 -5 -1 0 F2 x
-3
Популярное:
|
Последнее изменение этой страницы: 2017-03-09; Просмотров: 2176; Нарушение авторского права страницы