Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Классификация биогенных элементов по их содержанию в организме (макро-, олиго-, микробиогенные элементы) и по функциональной роли (органогены, элементы электролитного фона, микроэлементы).



I Классификация БЭ по содержанию:

1)Макробиогенные элементы (> 1%)

к ним относятся O(62, 4%), C(21%), H( 9, 7%), N(3, 1%), P(0, 95%), Ca(1, 5%)

Первые пять элементов- неметаллы, находятся в I-III периодах.

2)Олигобиогенные элементы(10-2%-1%)

Na, K, Mg, Fe, S, Cl- располагаются в III-IV периодах.

Содержание этих элементов составляет: 0, 08; 0, 23; 0, 027; 0, 01; 0, 16; 0, 08

3)Микробиогенные(10-2%)

находятся в IV-V периодах (16 из 21)

Выводы: -процентное содержание хим.элементов обратно пропорционально их порядковым номерам;

-основу организма составляют элементы первых трех периодов.

II Классификация БЭ по функциональной роли:

1)Органогены

С, Н, О, N, P, S составляют основу живых систем (Б, Ж, У, НК)

Суммарное содержание- 97, 4%

Все, кроме S, принадлежат к макробиогенным эл-там.

2)Элементы электролитного фона

Na+, K+, Mg+, Ca+, Cl- являются основными катионами физ.жидкостей.

Na, K, Mg, Cl относятся к олигоэлементам.

3)Микроэлементы
в их число входят остальные БЭ (22), к ним относится 21 микроэлемент (по содержанию) +Fe. Функция- активаторов и катализаторов.


Биологические ф-ции связаны с процессами комплексообразования. Входя в состав ферментов, гормонов, витаминов, МЭ участвуют в процессах роста и размножения, обмене в-в, в тканевом дыхании, обезвреживании токсических в-в. МЭ способствуют поддержанию кислотно-основного, окислительно-восстановительного, метало-лигандного равновесия.


МЭ неравномерно распределены между тканями и органами, большая часть содержится в печени (депо для МЭ)

Примеры повышенного содержания МЭ в организме:

I- в щитовидной железе,

F- в эмали зубов,

Zn-в поджелудочной железе,

Mo-в почках,

Ba-в сетчатке.

 

44. Эссенциальные микроэлементы (Fe, Co, Cr, Mn, Zn, Cu, Mo): содержание в организме, биологическая роль.

Железо (Fe)

В организме содержится 5-5, 5 г, большая его часть 70-80% находится в гемоглобине.

Ежедневная доза- 1, 2 мг. Ежедневное потребление 10-20 (5-10) мг

Из пищи поступает в организм только 10-20% железа.

Недостаток Fe вызывает железодефицитную анемию. Соединения железа выполняют каталитическую, транспортную, буферную функцию.

Цинк (Zn)

В организме содержится 2, 3 г.

Суточная потребность 13 мг.

Биологическая роль Zn обусловлена постоянным зарядом его иона. Известно более 40 металлоферментов, активирующих гидролиз белка, пептидов.
Zn влияет на основные процессы кроветворения, размножения, роста и развития организма.

Медь (Cu)

В организме содержится 100 мг.

Суточная норма- 2-3 мг

Главная функция- ферментативная. Известно около 25 медьсодержащих ферментов. Участие меди в ОВР основано на легкости превращения: Cu2+ +e=Cu+
Cu участвует в кроветворении

Марганец (Mn)

В организме содержится 12 мг.

Суточная потребность 5-7 мг.

Присутствует в виде ионов M2+ или в комплексе с белками, амк.

Функция- регуляция активности различных ферментов. Активируя АТФ, марганец участвует в процессах аккумуляции и переноса энергии. Мn стабилизирует структуру нуклеиновых кислот.

Молибден (Мо)

В организме содержится 9 мг.

С пищей потреб. 0, 2-0, 3 мг/сут.

Входит в состав ферментов, которые катализируют окислительно- восстановительные процессы. Входе этих реакций, его степень окисления с +6 уменьшается до +5, +4, происходит восстановление. При избыточном поступлении молибдена происходит активация синтеза ксантиноксидазы.

Хром (Cr)

Содержание в организме 6-6, 6 мг

Суточная потребность- 0, 15мг.

Преимущественно концентрируется в костях, содержится в эритроцитах.

Cr участвует в обмене НК, входит в состав ферментных систем. Иона Cr3+ участвуют в стабилизации НК.

Кобальт (Со)

В организме содержится 1, 2 мг.

Ежедневное потребление- 0, 3 мг.

5-10% входит в состав витамина В12, Со единственный из металлов, входящий в структуру витамина. Участвует в ОВР организма, поскольку возможен процесс:
Со3+ +е= Со2+

Со влияет на минеральный, липидный обмен, участвует в кроветворении. Недостаток Со вызывает злокачественную анемию.

 

Часть II. Теория. Биоорганическая химия

 

Номенклатура органиеских соединений.Понятие о структурной изомерии органических соединений. Строение атома углерода, типы гибридизации и виды ковалентной связи в орг соединениях. Связь пространственного строения орг. соединений с их биолог активностью

Названия углеводородов и алкильных групп:

Метан СН4 Метил СН3-
Этан С2Н6 Этил С2Н5-
Пропан СН3СН2СН3 Пропил Изопропил СН3СН2СН2- СН3СНСН3
Бутан СН3СН2СН2СН3 Бутил Изобутил   Втор. бутил   Трет. бутил

по номенклатуреIUPAC

( заместительная номенклатура )

Для составления названия органического соединения по номенклатуре IUPAC необходимо выполнить следующие операции:

1. Определите функциональную (характеристическую) группу, если она имеется, суффикс которой используют при составлении названия. При составлении названия используется суффикс только одной функциональной группы, называемой главной ( исключение: суффиксы двойной или тройной связи). Все заместители, в том числе и другие младшие функциональные группы, указываются префиксами.

Некоторые характеристические группы, расположенные

в порядке уменьшения старшинства

КЛАСС Формула ПРЕФИКСЫ СУФФИКСЫ
Карб.к-ты   Альдегиды   Кетоны Спирты Фенолы Амины -СООН -(С)ООН -СНО -(С)НО -(С)=О -ОН -ОН -NH2 -карбокси - -формил -оксо -оксо -гидрокси -гидрокси -амино -карб. кислота -овая кислота -карбальдегид -аль -он -ол -ол -амин

2. Определите родовой гидрид:

а) для ациклических соединений родовым гидридом является самая длинная неразветвленная цепь, включающую главную функциональную группу а также двойные и (или) тройные связи. Родовой гидрид образуется прибавлением атомов водорода вместо заместителей или гетероатомов, присоединеннных к длинной цепи, чтобы получился насыщенный углеводород.

б) для циклических соединений родовым гидридом является насыщенный циклоалкан, например циклогексан или полностью ненасыщенный углеводород ( гетероциклическое соединение), например бензол, пиридин и т.д.

3. Назовите родовой гидрид вместе с суффиксом главной группы.

4. Пронумеруйте самую длинную цепь таким образом, чтобы атом углерода главной функциональной группы получил наименьший номер.

5. Назовите заместители вместе с цифрами(локантами), указывающими атомы углерода, при которых заместители находятся и присоедините их к названию родового гидрида. Локанты двойной и (или) тройной связи и локант главной функциональной группы расположите перед соответствующими суффиксами.

1-ый пример

Н3С - СН2 - ОН НО - СН2 - СН2 - ОН

Главная группа: -ОН -ол

Родовой гидрид: Н3С - СН3 этан

Название: этан ол этан диол-1, 2

2-ой пример:

 

 

3-ий пример:

 

 

Пространственные изомеры: Энантиомеры

 

Строение атома углерода

 

Типы гибридизации

В зависимости от числа вступивших в гибридизациб орбиталей том углерода может находиться в 3 видах гибрид-ии

1.первое валентное состояние sp3 гибр- при комбинации 1 s и 3 p орбиталей,

 

2. Sp2- 1s и 2p

3. Sp -1s и 1p

Ковалентная связь -хим связь, образованная за счете обобщения электронов связываемых атомов-осн тип связи в орг в-вах

Неполярная КС-связь, образованная между атомами с одинаковой электроотрицательностью, при которой связующее электронное облако равномерно распределено в обасти пространства между ядрами данных атомов

Полярная КС- связь, образованная между атомами с разной электроотрицательностью, при которой связующее электронное облако смещено в сторону более электроотрицательного атома

КС бывают 2х типов: сигма и пи связи

Сигма связь-связь, образованная при осевом перекрывании атомной орбиталей с расположением максимума перекрывания на прямой, соединяющей ядра связываемых атомов

Пи связь-образована при бороков перекрывании p-АО

46-Реакция электрофильного присоединения: гетеролитическая реакция с участием π -связи между sp2-гибридизованными атомами углерода (галогенирование, гидрогалогенирование, гидратация).

АЕ- реакция электрофильного присоединения.

Ненасыщенные углеводороды – алкены, циклоалкены, алкадиены и алкины проявляют способность к реакциям присоединения, так как содержат двойные или тройные связи. За счёт π -электронов в молекулах таких соединений имеется довольно обширная область отрицательного заряда. Поэтому они представляют собой нуклеофилы и, следовательно, склонны подвергаться атаке электрофильной частицей (электрофильмым реагентом).


Поделиться:



Популярное:

Последнее изменение этой страницы: 2017-03-09; Просмотров: 4283; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.033 с.)
Главная | Случайная страница | Обратная связь