|
Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Статистическое обоснование второго начала термодинамики
Пусть имеются два одинаковых сосуда, соединённых между собой таким образом, что газ из одного сосуда может перетекать в другой и пусть в начальный момент все молекулы газа находятся в одном сосуде. По истечении некоторого времени произойдёт перераспределение молекул, приводящее к возникновению равновесного состояния, характеризующегося равной вероятностью нахождения молекул в обоих сосудах. Самопроизвольный переход в исходное неравновесное состояние, при котором все молекулы сосредоточены в одном из сосудов, практически невозможен. Процесс перехода из равновесного в неравновесное состояние оказывается очень маловероятным, так как размер относительных флуктуаций параметров при больших количествах частиц в сосудах очень мал. Этот вывод соответствует второму началу термодинамики, утверждающему, что термодинамическая система самопроизвольно переходит из неравновесного состояния в равновесное, тогда как обратный процесс возможен только при внешних воздействиях на систему.
Энтропия и вероятность Термодинамической величиной, характеризующей направление протекания самопроизвольных термодинамических процессов, является энтропия. Наиболее вероятному равновесному состоянию соответствует максимум энтропии.
Пусть имеется сосуд объёмом V0 , внутри которого находится одна молекула. Вероятность того, что частица будет обнаружена внутри некоторого объёма V < V0 , выделенного внутри сосуда, равна
Для N частиц вероятность их одновременного обнаружения в объёме V составит
Если в этом сосуде выделить два объёма V1 и V2 то можно записать отношения вероятностей того, что все молекулы находятся в указанных объёмах:
Определим приращение энтропии в изотермическом процессе
расширения идеального газа от V1 до V2 :
Используя отношение, вероятностей получаем:
Полученное выражение не определяет абсолютное значение энтропии в каком-либо состоянии, а только даёт возможность найти разность энтропий в двух различных состояниях. Для однозначного определения энтропии используют статистический вес G , значение которого выражается целым положительным числом и пропорционально вероятности: G ~ P. Статистическим весом макросостояния называется величина, численно равная количеству равновесных микросостояний, с помощью которых может быть реализовано рассматриваемое макросостояние. Переход к статистическому весу позволяет записать соотношение для энтропии в виде формулы Больцмана для статистической энтропии:
. Лекция 15 Явления переноса Термодинамические потоки Термодинамические потоки, связанные с переносом вещества, энергии или импульса из одной части среды в другую, возникают в случае, если значения тех или иных физических параметров отличаются в объёме среды.
Диффузией называют процесс самопроизвольного выравнивания концентраций веществ в смесях. Скорость диффузии сильно зависит от агрегатного состояния вещества. Быстрее диффузия происходит в газах и очень медленно в твёрдых телах.
Теплопроводностью называют явление, приводящее к выравниванию температуры в различных точках среды. Большая теплопроводность металлов связана с тем, что в них перенос теплоты осуществляется не вследствие хаотического движения атомов и молекул, как, например, в газах или жидкостях, а свободными электронами, имеющими гораздо большие скорости теплового движения. Вязкостью или внутренним трением называют процесс возникновения силы сопротивления при движении тела в жидкости или газе и затухания звуковых волн при прохождении их через различные среды.
Для количественного описания термодинамического потока вводят величину
Если термодинамический поток однороден то В случае диффузии поток При теплопроводности величина Для явления вязкости величина
Если рассматриваемая термодинамическая система находится в состоянии близком к равновесию, то плотность термодинамического потока пропорциональна градиенту соответствующей физической величины в той же точке. Популярное:
|
Последнее изменение этой страницы: 2017-03-11; Просмотров: 891; Нарушение авторского права страницы