Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Метод итерации для нелинейной системы уравнений
Пусть требуется найти действительные решения системы двух уравнений с заданной точностью . Для этого перепишем исходную систему в приведенном (итерационном) виде: . Пусть и – начальные приближения корней, полученные графическим или каким-либо другим способом. Подставив эти значения в правые части приведенной системы уравнений, можно получить Аналогично можно получить второе приближение В общем случае Если функции и непрерывны и последовательности и сходятся, то пределы их дают решение приведенной, следовательно, и исходной системы. Сходимость метода Теорема. Пусть в некоторой замкнутой окрестности имеется одно и только одно решение и приведенной системы. Тогда если: 1) функции и определены и непрерывно дифференцируемы в ; 2) начальные приближения , и все последующие приближения , принадлежат ; 3) в выполнены неравенства или неравенства , то процесс последовательных приближений сходится к решению , . Оценка погрешности -го приближения определяется неравенством: , где – наибольшее из чисел и , входящих в эти неравенства. Сходимость метода считается хорошей, если ; при этом . Поэтому если в двух последовательных приближениях совпадают, например, три десятичных знака после запятой, то ошибка последнего приближения не превосходит 0, 001. Метод скорейшего спуска решения нелинейных систем Сущность метода скорейшего спуска заключается в том, что искомое решение системы рассматривается как минимум некоторой функции в -мерном пространстве , и этот минимум ищется в направлении, противоположном направлению градиента функции , то есть в направлении скорейшего убывания этой функции. Фунция связана с функциями исходной системы соотношениями: . Пусть точка является начальным приближением к искомому решению. Через эту точку проводится поверхность уровня , а также нормаль к данной поверхности, которая указывает направление скорейшего убывания функции . Точка, в которой нормаль касается новой поверхности уровня , будет следующим приближением к исходному решению. Нормаль, проведенная к этой поверхности через точку , даёт возможность дойти до точки , в которой нормаль касается какой-то другой поверхности , и т. д. Так как , где то последовательность точек , , … приведет к минимальному значению функции , т. е. к искомому решению исходной системы. Последовательные приближения определяются из матричного равенства , где через обозначен вектор в -мерном пространстве, указывающий координаты точки , т. е. значение -го приближения; – параметр, характеризующий изменение функции вдоль соответствующей нормали, – градиент функции в точке . В общем случае параметр может быть найден из уравнения: , (1) где – скалярная функция, определяющая изменение функции . При этом берется наименьший положительный корень уравнения (1). Если считают малой величиной и не учитывают членов, содержащих во второй и высших степенях, то приближенно искомое решение можно найти из матричных равенств , , , где , ,
. Важным достоинством метода скорейшего спуска является его неизбежная сходимость. Поэтому его рекомендуется применять для уточнения решения в тех случаях, когда другие итерационные методы расходятся.
ПРИБЛИЖЕНИЕ ФУНКЦИЙ Метод наименьших квадратов В инженерной деятельности часто возникает необходимость описать в виде функциональной зависимости связь между величинами, заданными таблично или в виде набора точек с координатами , где – общее количество точек. Как правило, эти табличные данные получены экспериментально и имеют погрешности. Рис. 12
При аппроксимации желательно получить относительно простую функциональную зависимость (например, многочлен), которая позволила бы «сгладить» экспериментальные погрешности, вычислить значения функции в точках, не содержащихся в исходной таблице. Эта функциональная зависимость должна с достаточной точностью соответствовать исходной табличной зависимости. В качестве критерия точности чаще всего используют критерий наименьших квадратов, т.е. определяют такую функциональную зависимость , при которой обращается в минимум. Погрешность приближения оценивается величиной . В качестве функциональной зависимости рассмотрим многочлен . Формула минимизируемой функции примет вид . Условия минимума можно записать, приравнивая нулю частные производные по всем переменным, . Получим систему уравнений или , . Эту систему уравнений перепишем в следующем виде: , . Введем обозначения: . Последняя система может быть записана так: , . Её можно переписать в развернутом виде: .
Матричная запись системы имеет следующий вид: . Для определения коэффициентов , и, следовательно, искомого многочлена, необходимо вычислить суммы и решить последнюю систему уравнений. Матрица этой системы является симметричной и положительно определенной. Погрешность приближения в соответствии с исходной формулой составит . Рассмотрим частные случаи и . Линейная аппроксимация . . ; , . Отсюда система для нахождения коэффициентов имеет вид: . Её можно решить методом Крамера. Квадратичная аппроксимация . . . . , . Или в развёрнутом виде Решение системы уравнений находится по правилу Крамера. Популярное:
|
Последнее изменение этой страницы: 2017-03-11; Просмотров: 963; Нарушение авторского права страницы