Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Метод итерации для нелинейной системы уравнений



Пусть требуется найти действительные решения системы двух уравнений с заданной точностью

.

Для этого перепишем исходную систему в приведенном (итерационном) виде: . Пусть и – начальные приближения корней, полученные графическим или каким-либо дру­гим способом. Подставив эти значения в правые части приведенной системы уравнений, мож­но получить

Аналогично можно получить второе приближение

В общем случае Если функции и

непрерывны и последовательности и сходятся, то пределы их дают решение приведенной, следовательно, и исходной системы.

Сходимость метода

Теорема. Пусть в некоторой замкнутой окрестности имеется одно и толь­ко одно решение и приведенной системы.

Тогда если:

1) функции и определены и непрерывно дифференцируемы в ;

2) начальные приближения , и все последующие приближения , при­над­лежат ;

3) в выполнены неравенства или

неравенства , то процесс последовательных приближений сходится к решению , .

Оценка погрешности -го приближения определяется неравенством:

,

где – наибольшее из чисел и , входящих в эти неравенства.

Сходимость метода считается хорошей, если ; при этом . Поэтому если в двух последовательных приближениях совпадают, например, три десятичных знака после запятой, то ошибка последнего приближения не превосходит 0, 001.

Метод скорейшего спуска решения нелинейных систем

Сущность метода скорейшего спуска заключается в том, что искомое решение системы рассматривается как минимум некоторой функции в -мерном пространстве , и этот минимум ищется в направлении, противоположном направлению градиента функции , то есть в направлении скорейшего убывания этой функции. Фунция связана с функциями исходной системы соотношениями:

.

Пусть точка является начальным приближением к искомому решению. Через эту точку проводится поверхность уровня , а также нормаль к данной поверхности, которая указывает направление скорейшего убывания функции . Точка, в которой нормаль касается новой поверхности уровня , будет следующим приближением к исходному решению. Нормаль, проведенная к этой поверхности через точку , даёт возможность дойти до точки , в которой нормаль касается какой-то другой поверхности , и т. д.

Так как , где то последовательность точек , , … приведет к минимальному значению функции , т. е. к искомому решению исходной системы.

Последовательные приближения определяются из матричного равенства , где через обозначен вектор в -мерном пространстве, указывающий координаты точки , т. е. значение -го приближения; – параметр, характеризующий изменение функции вдоль соответствующей нормали, – градиент функции в точке .

В общем случае параметр может быть найден из уравнения:

, (1)

где – скалярная функция, определяющая изменение функции . При этом берется наименьший положительный корень уравнения (1).

Если считают малой величиной и не учитывают членов, содержащих во второй и высших степенях, то приближенно искомое решение можно найти из матричных равенств , , , где

,

,

 

.

Важным достоинством метода скорейшего спуска является его неизбежная сходимость. Поэтому его рекомендуется применять для уточнения решения в тех случаях, когда другие итерационные методы расходятся.

 

ПРИБЛИЖЕНИЕ ФУНКЦИЙ

Метод наименьших квадратов

В инженерной деятельности часто возникает необходимость описать в виде функциональной зависимости связь между величинами, заданными таблично или в виде набора точек с координатами , где – общее количество точек. Как правило, эти табличные данные получены экспериментально и имеют погрешности.

Рис. 12

 

При аппроксимации желательно получить относительно простую функциональную зависимость (например, многочлен), которая позволила бы «сгладить» экспериментальные погрешности, вычислить значения функции в точках, не содержащихся в исходной таблице.

Эта функциональная зависимость должна с достаточной точностью соответствовать исходной табличной зависимости. В качестве критерия точности чаще всего используют критерий наименьших квадратов, т.е. определяют такую функциональную зависимость , при которой обращается в минимум. Погрешность приближения оценивается величиной . В качестве функциональной зависимости рассмотрим многочлен . Формула минимизируемой функции примет вид . Условия минимума можно записать, приравнивая нулю частные производные по всем переменным, .

Получим систему уравнений

или , .

Эту систему уравнений перепишем в следующем виде:

, .

Введем обозначения: . Последняя система может быть записана так: , .

Её можно переписать в развернутом виде:

.

 

Матричная запись системы имеет следующий вид: . Для определения коэффициентов , и, следовательно, искомого многочлена, необходимо вычислить суммы и решить последнюю систему уравнений. Матрица этой системы является симметричной и положительно определенной.

Погрешность приближения в соответствии с исходной формулой составит

. Рассмотрим частные случаи и .

Линейная аппроксимация .

.

;

, .

Отсюда система для нахождения коэффициентов имеет вид:

.

Её можно решить методом Крамера.

Квадратичная аппроксимация .

.

.

.

, .

Или в развёрнутом виде

Решение системы уравнений находится по правилу Крамера.


Поделиться:



Популярное:

  1. I) Получение передаточных функций разомкнутой и замкнутой системы, по возмущению относительно выходной величины, по задающему воздействию относительно рассогласования .
  2. I. РАЗВИТИИ ЛЕКСИЧЕСКОЙ СИСТЕМЫ ЯЗЫКА У ДЕТЕЙ С ОБЩИМ НЕДОРАЗВИТИЕМ РЕЧИ
  3. I.4. СЕМЬЯ И ШКОЛА : ОТСУТСТВИЕ УСЛОВИЙ ДЛЯ ВОСПИТАНИЯ
  4. II. Ассистивные устройства, созданные для лиц с нарушениями зрения
  5. II. О ФИЛОСОФСКОМ АНАЛИЗЕ СИСТЕМЫ МАКАРЕНКО
  6. II. Порядок представления статистической информации, необходимой для проведения государственных статистических наблюдений
  7. III. Защита статистической информации, необходимой для проведения государственных статистических наблюдений
  8. III. Перечень вопросов для проведения проверки знаний кандидатов на получение свидетельства коммерческого пилота с внесением квалификационной отметки о виде воздушного судна - самолет
  9. Qt-1 - сглаженный объем продаж для периода t-1.
  10. V Методика выполнения описана для позиции Учителя, так как Ученик находится в позиции наблюдателя и выполняет команды Учителя.
  11. V) Построение переходного процесса исходной замкнутой системы и определение ее прямых показателей качества
  12. V. Порядок разработки и утверждения инструкций по охране труда для работников


Последнее изменение этой страницы: 2017-03-11; Просмотров: 963; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.018 с.)
Главная | Случайная страница | Обратная связь