Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Работа 5. ОПРЕДЕЛЕНИЕ РЕЖИМов ДВИЖЕНИЯ жидкости



Цель работы

1. Визуальное наблюдение ламинарного и турбулентного режимов движения жидкости.

2. Освоение расчетного метода определения режима течения.

Общие сведения

Практическое исследование движения капельных и газообразных жидкостей показывает, что существуют два принципиально различных режима течения: ламинарный и турбулентный режимы.

Существование двух резко отличных друг от друга режимов движения жидкости было открыто в 1839 и 1854 гг. немецким инженером-гидромехаником Г. Хагеном; английский физик О. Рейнольдс в 1883 г. опытным путем подтвердил этот факт.

Ламинарный режим (от латинского слова lamina – слой) характеризуется слоистым течением без перемешивания частиц жидкости и без пульсаций скоростей и давления. При данном режиме движения отсутствуют поперечные перемещения жидкости, линии тока вполне определяются границами русла, по которому течет жидкость. При постоянном напоре ламинарное течение является упорядоченным, строго установившемся течением (в общем случае возможен неустановившийся режим течения). Ламинарное течение нельзя назвать безвихревым течением, так как наряду с поступательным движением имеет место вращательное движение отдельных частиц жидкости относительно мгновенных центров вращения с некоторыми угловыми скоростями, но отдельные вихри в ламинарном потоке гасятся силами вязкости.

Ламинарный режим движения встречается чаще всего в практике течения особенно вязких жидкостей (нефти, нефтепродуктов, битума, масел и т. п.), при низких скоростях течения в каналах незначительного поперечного сечения (движение воды через поры грунта, капилляры и т.п.).

Турбулентный режим (от латинского слова turbulentus – беспорядочный) характеризуется хаотическим, беспорядочным движением отдельных частиц жидкости, интенсивным вращением, вихреобразованием и поперечным перемешиванием, пульсациями во времени поля скоростей и поля давлений в любой точке пространства, занятого турбулентным потоком. В целом, при турбулентном режиме жидкость движется поступательно, вместе с тем, составляющие ее частицы имеют не только осевые, но и нормальные к оси русла составляющие вектора скорости, поэтому перемещения отдельных частиц жидкости представляют собой пространственные, неопределенно искривленные траектории.

Турбулентный режим движения в природе и технике встречается чаще ламинарного режима, так как на практике обычно имеются дополнительные условия, способствующие турбулизации потока, – неравномерность расхода, местные гидравлические сопротивления, вибрация и пр. Турбулентный режим течения наблюдается при движении маловязких жидкостей (бензина, керосина, спирта, кислоты и пр.), в большинстве случаев гидротехнической и гидромелиоративной практики (движение воды в трубах, каналах, реках и т.п.).

Критерием, позволяющим определять режим течения жидкости, является число Рейнольдса – это критерий гидродинамического подобия, который с физической точки зрения представляет собой соотношение инерционных и вязкостных сил и определяется следующим соотношением:

, (1)

где V – средняя скорость потока, м/с; R=w /П – гидравлический радиус – отношение площади живого сечения w к смоченному периметру П, м; n – кинематический коэффициент вязкости жидкости, м2/с.

Для труб круглого сечения диаметром d число Рейнольдса Re примет следующий вид:

, (2)

здесь d – внутренний диаметр трубопровода, м.

Смена одного режима течения жидкости другим происходит скачкообразно и обусловлена тем, что одно течение теряет устойчивость, другое – приобретает. В инженерной практике режим течения определяют путем сравнения числа Рейнольдса Re с его критическим значением Reкр. Различают два значения этого числа: нижнее критическое число Рейнольдса Reнкр и верхнее критическое числоРейнольдса Reвкр.

При числах Рейнольдса Re < Reнкр ламинарное течение является вполне устойчивым: искусственная турбулизация потока и его возмущения гасятся влиянием сил вязкости, и ламинарный режим вновь восстанавливается.

При числах Рейнольдса Re > Reвкр движение будет турбулентным.

При числах Рейнольдса Reнкр < Re < Reвкр (в так называемой “переходной зоне” или “критической”) оба режима равновероятны: течение может быть либо ламинарным, либо турбулентным. Однако ламинарный режим в этом диапазоне изменения чисел Рейнольдса оказывается крайне неустойчивым: достаточно малейшего возмущения потока (например, толчка и пр.), и ламинарный режим “разрушается” и переходит в турбулентный. При практических расчетахполагают, что в переходной зоне вероятнее турбулентный режим.

Для большинства гидравлических систем, работающих в реальных условиях производства, устанавливают следующие общепринятые критические значения чисел Рейнольдса:

– нижнее критическое число Рейнольдса Reнкр = 2300;

– верхнее критическое число Рейнольдса Reвкр = 4000.

 

Порядок выполнения работы

 

1. Снять показания термометра t, оC, находящегося в устройстве № 1 (см. рис. 1) и определить кинематический коэффициент вязкости:

. (3)

2. Создать в канале 4 течение жидкости при произвольном наклоне устройства № 3 от себя (см. рис. 4, а).

3. Измерить время t (в секундах) перемещения уровня воды в баке на некоторое расстояние S.

4. По данным измерений определить:

а) расход жидкости

, (4)

где числовые значения поперечного сечения бака А и В определить по табло на устройстве № 3;

б) среднюю скорость потока (значение площади сечения w, а также диаметра d для дальнейших расчетов также определить по табло на устройстве № 3)

; (5)

в) число Рейнольдса Re по уравнению (2).

5. Повернуть устройство № 3 в его плоскости на 1800 (см. рис. 4, б) и повторить опыт по пп. 3…5.

6. Данные опытов занести в табл. 8 (см. Приложение).

7. Сделать выводы по данной работе.


Поделиться:



Популярное:

  1. A. обеспечение выполнения расписания движения, корректировка движения в случае необходимости, оказание техпомощи ПС на линии, принятие мер в случае ДТП и др.
  2. Linux - это операционная система, в основе которой лежит лежит ядро, разработанное Линусом Торвальдсом (Linus Torvalds).
  3. PEST-анализ макросреды предприятия. Матрица профиля среды, взвешенная оценка, определение весовых коэффициентов. Матрицы возможностей и матрицы угроз.
  4. Адамс Б. Эффективное управление персоналом: Сделайте так, чтобы ваши служащие работали с максимальной отдачей, - М: АСТ Астрель, 2008. – 367 с.
  5. Административная итоговая контрольная работа по окружающему миру за 1 класс
  6. Анализ баланса реактивной мощности на границе раздела энергоснабжающей организации и потребителя, и при необходимости определение мощности батарей конденсаторов для сети напряжением выше 1 кВ
  7. Анализ движения рабочей силы
  8. Артикулирование звуков, работа над дикцией
  9. Архитектурно-строительные чертежи, разработанные с применением автоматизированных программ.
  10. Безопасность движения поезда и риски потерь
  11. Бессознательное в работах Лакана
  12. Бида А.И. Итоговая контрольная работа.


Последнее изменение этой страницы: 2016-04-11; Просмотров: 840; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.017 с.)
Главная | Случайная страница | Обратная связь