Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Геометрический смысл теоремы Лагранжа



С геометрической точки зрения теорема Лагранжа означает, что график функции, непрерывной на отрезке [a; b] и дифференцируемой на интервале (a; b), имеет хотя бы одну точку (х0; f(х0), в которой касательная параллельна секущей, проходящей через точки A(a; f(a)) и B(b; f(b)) (рис. 8)

 

Рис. 8

Теорема Коши

Теорема 6 (теорема Коши). Если функции f(x) и g(x) определены на отрезке [a; b] и удовлетворяют условиям:

· f(x) и g(x) непрерывны на отрезке [a; b];

· f(x) и g(x) дифференцируемы на интервале (a; b);

· g '(x) ¹ 0 при любом x Î (a; b),

то внутри отрезка [a; b] найдётся хотя бы одна точка х0, в которой выполняется равенство:

.

Доказательствоаналогично доказательству теоремы 5 (теорема Лагранжа) при вспомогательной функции

F(x) = f(x) + l × g(x),

где l = const, которую выбирают так, чтобы F(a) = F(b).

Правило Лопиталя

Теорема 7 (правило Лопиталя). Если функции f(x) и g(x) определены в некоторой окрестности точки х0 и в этой окрестности они удовлетворяют условиям:

· f(x) и g(x) дифференцируемы в каждой точке за исключением может быть самой точки х0;

· g '(x) ¹ 0 для любого x из этой окрестности;

· или ,

тогда, если существует конечный или бесконечный, то выполняется равенство:

= .

Замечание 1.Правило Лопиталя используется для раскрытия неопределённостей типа или , возникающих при вычислении пределов. Если под знаком предела оказывается неопределённость другого типа: 0× ∞, , 10, 00 или ∞ 0, то с помощью тождественных алгебраических преобразований такая неопределённость приводится к или и тогда можно применить правило Лопиталя.

Замечание 2.Если к условиям теоремы 7 добавить дифференцируемость функций f '(x) и g'(x) в окрестности точки х0, то при выполнении остальных требований для f '(x) и g'(x) правило Лопиталя можно применить повторно. При этом будет справедливо равенство:

 

= =

Пример 1. Вычислить предел:

Пример 2. Вычислить предел:

Пример 3. Вычислить предел:

Пример 4. Вычислить предел:

.

Пример 5. Вычислить предел:

Пример 6. Вычислить предел:

 

ИССЛЕДОВАНИЕ ПОВЕДЕНИЯ ФУНКЦИЙ

 

Асимптоты плоской кривой

Определение 1 . Если точка M(x; y) перемещается по кривой y = f(x) так, что хотя бы одна из координат точки стремится к ¥ и при этом расстояние от этой точки до некоторой прямой стремится к 0, то эта прямая называется асимптотой кривой y = f(x).

Асимптоты бывают двух видов: вертикальные и наклонные.

Определение 2. Прямая x = a называется вертикальной асимптотой кривой y = f(x), если хотя бы один из односторонних пределов или равен +¥ или – ¥.

Замечание. Если прямая x = a является вертикальной асимптотой кривой y = f(x), то в точке x = a функция f(x) имеет разрыв второго рода. Наоборот, если в точке x = a функция f(x) имеет разрыв второго рода, то прямая x = a является вертикальной асимптотой кривой y = f(x).

Определение 3. Прямая называется наклонной асимптотой кривой при (или ), если функцию f(x) можно представить в виде:

,

где (x) – бесконечно малая функция при (или ).

Теорема 1 . Для того чтобы кривая y = f(x) имела наклонную асимптоту при (или ) необходимо и достаточно существования двух конечных пределов:

и

Доказательство. Ограничимся случаем .

Необходимость. Пусть y = kx+b – наклонная асимптота при кривой y = f(x). Тогда функцию f(x) представим в виде:

 

, где при .

Убедимся в существовании конечных пределов:

.

.

Необходимость доказана.

Достаточность. Пусть существуют конечные пределы и .

Тогда по свойству конечных пределов второй предел можно переписать в виде:

,

где (x) – бесконечно малая величина при .

Отсюда получаем:

,

где при .

Достаточность доказана.

Пример 1. Найти асимптоты кривой .

Решение.

1) D(y) = (–¥; –1) È (–1; 1) È (1; + ¥ ).

2) Точки x = –1 и x = 1 являются точками разрыва второго рода, так как:

 

 

Поэтому прямые x = –1 и x = 1 являются вертикальными асимптотами.

3) Вычислим пределы:

, k = 1.

Отсюда следует, что при прямая y = 1× x +0, т.е. y = x – наклонная асимптота при .

Найдём наклонную асимптоту при .

Вычисляя те же пределы при , получим k = 1 и b = 0, т.е. прямая y = x является наклонной асимптотой при .

Ответ: x = ± 1 – вертикальные асимптоты

y = x – наклонная асимптота при x ® ±¥.

Монотонность функции

Определение 4. Функция y = f(x) называется возрастающей (убывающей) на промежутке (a; b), если для любых x1 и x2, принадлежащих этому промежутку, из условия x2 > x1 следует неравенство:

 

f(x2) > f(x1) (f(x2) < f(x1)).

 

Определение 5. Функция y = f(x) называется монотонной на промежутке (a; b), если она на этом промежутке является только возрастающей или только убывающей.

Теорема 2 (достаточные условия монотонности). Если функция y = f(x) дифференцируема на промежутке (a; b) и f’(x) > 0 (f’(x) < 0) для любых x Î (a; b), то функция возрастает (убывает) на этом промежутке.

Доказательство. Возьмём любые два значения x1 и x2 из промежутка (a; b). Для определённости предположим, что x2 > x1.

На отрезке [x1; x2] функция y = f(x) непрерывна и дифференцируема (из условия теоремы). Следовательно, она удовлетворяет теореме Лагранжа на отрезке [x1; x2], т.е. существует хотя бы одна точка c Î (x1; x2), в которой выполняется равенство:

f(x2) – f(x1) = f' (c) × (x2x1).

Если f '(x) > 0 для любых xÎ (a; b), то f '(c) > 0. Поэтому f(x2) – f(x1) > 0, т.е. из условия x2 > x1 следует неравенство f(x2) > f(x1). А так как x1 и x2 –любые значения из промежутка (a; b), то функция y = f(x) возрастает на этом промежутке.

Если для любых , то . Поэтому , то есть из условия x2 > x1 следует неравенство f(x2) < f(x1). Так как x1 и x2 любые значения из промежутка (a; b), то функция y = f(x) убывает на этом промежутке.

Теорема доказана.

Экстремумы функции

Определение 6. Функция y = f(x) имеет в точке x0Î D(f) максимум ymax (минимум ymin), если существует такая окрестность точки x0, в которой для всех x выполняется неравенство:

 

f(x0) > f(x) (f(x0) < f(x)).

Определение 7. Точки максимума и минимума функции называются точками экстремума функции.

Теорема 3 (необходимое условие экстремума). Если функция y = f(x) имеет экстремум в точке x0, то в этой точке производная функции равна нулю или не существует.

Доказательство. 1)Для определённости рассмотрим случай, когда функция y = f(x) в точке x0 имеет максимум и в этой точке существует производная. Тогда из определения максимума для любого x, принадлежащего окрестности точки x0 f(x0) > f(x).

Отсюда следует, что для любого Dx ≠ 0 справедливо неравенство: f(x0+Dx) – f(x0) < 0. Разделим это неравенство на Dx, получим:

при Dx > 0:

при Dx < 0:

 

Перейдём к пределам:

 

Так как существует, то:

Аналогично рассматривается случай, когда x0 – точка минимума.

2) Если f '(x0) не существует или равна ¥, то точка x0 может быть точкой экстремума функции.

Например, функция y = имеет минимум при x = 0, хотя y'(0) не существует (рис. 9).

Рис. 9

 

Теорема доказана.

Теорема 4 (достаточное условие экстремума). Если функция y = f(x) непрерывна в точке x0, дифференцируема в некоторой её окрестности, за исключением может быть самой этой точки, f’(x0) = 0 или не существует и при переходе x через точку x0 производная f '(x) изменяет знак, то точка x0 является точкой экстремума. Если при этом знак f '(x) меняется

с + на –, то x0 – точка максимума,

с – на +, то x0 – точка минимума.

Доказательство. Пусть f '(x) при переходе x через точку x0 изменяет знак с

+ на –, т.е. f '(x) > 0 при x Î (x0 – d; x0) и f '(x) < 0 при x Î (x0; x0 + d), где d > 0 (рис. 10).

Рис. 10

 

1) Пусть x Î (x0 – d; x0). На отрезке [x; x0] функция y = f(x) удовлетворяет теореме Лагранжа. Значит, на интервале (x; x0) найдётся хотя бы одна точка c1, в которой выполняется равенство:

f(x) – f(x0) = f '(c1)× (x x0),

где c1Î (x0 – d; x0).

Так как f '(c1) > 0 и x x0 < 0, то f(x) – f(x0) < 0.

 

2) Пусть . На отрезке функция также удовлетворяет теореме Лагранжа. Значит на интервале (x0; x) найдётся хотя бы одна точка с2, в которой выполняется равенство:

 

f(x) – f(x0) = f’(c2)× (x x0),

где c2 Î (x0; x0 + d).

Так как f '(c2) < 0 и x x0 > 0, то f(x) – f(x0) < 0.

 

Следовательно, для любого x Î (x0 – d; x0 + d) выполняется неравенство:

f(x0) > f(x).

Отсюда следует, что точка x0 является точкой максимума функции y = f(x). Аналогично рассматривается случай, когда при переходе x через точку x0 изменяет знак с – на +. При этом точка x0 является точкой минимума функции .

Теорема доказана.


Поделиться:



Популярное:

  1. БЕССМЫСЛЕННОСТЬ И ПСИХОТЕРАПИЯ
  2. Бессолевая Диета Абсолютно Бессмысленна
  3. Билет №24 1.идеал.идеал и реальный мир. (?)Проблема идеального. Знак. Значение. Смысл.
  4. В этом основной смысл медитации: помочь вам выбраться из ума, помочь вам выбраться из различающего сознания и проложить дорогу, по которой вы могли бы войти в свидетельствующее сознание.
  5. Ваши слова воздействуют на слушателя как правда, как несомненный здравый смысл. Происходит ли это потому, что Вы исходите из Ваших фундаментальных ощущений, а у слушателя нет опыта подобных ощущений?
  6. Вовлеченность: главный терапевтический ответ на бессмысленность
  7. Вопрос 15: Сознание как предмет философского осмысления. Многомерностьи полифункциональность сознания, философия и когнитивные науки о структуре и функциях сознания
  8. Вопрос. Проблема личности и смысла жизни в «философии абсурда» А. Камю.
  9. Вопрос. Роман Ф.М.Достоевского «Идиот». Смысл названия. Какой он князь Мышкин? Мышкинский путь спасения человечества. Удался ли он?
  10. Всегда помни: слушая меня, пытайся понять мой смысл. Это трудно, но ты должен попытаться. В самой этой попытке ты выберешься из своих собственных смыслов.
  11. Второе начало термодинамики и его статистический смысл Гипотиза Больцмана о связи энтропий и вероятности состояния.
  12. Выражение смысловых отношений между словами и высказываниями.


Последнее изменение этой страницы: 2016-05-30; Просмотров: 934; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.062 с.)
Главная | Случайная страница | Обратная связь