Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Взаимодействие трех основных функциональных блоков мозга



[…]

Было бы неправильным думать, что каждый из этих блоков может самостоятельно осуществлять ту или иную форму деятель­ности, считая, например, что второй функциональный блок пол­ностью осуществляет функцию восприятия и мышления, а тре­тий — функцию движения и построения действий.

Приняв положение о системном строении сложных психоло­гических процессов, мы должны встать на иную точку зрения. Каждая форма сознательной деятельности всегда является слож­ной функциональной системой и осуществляется, опираясь на совме­стную работу всех трех блоков мозга, каждый из которых вносит свой вклад в осуществление психического процесса в целом.

Факты, которые хорошо установлены современной психологией, делают это положение бесспорным.

Уже давно прошло то время, когда психологи рассматривали психические функции как изолированные «способности», каждая из которых может быть локализована в определенном участке мозга Отвергнута и другая концепция, согласно которой психические процессы представлялись по модели рефлекторной дуги, первая часть которой имела чисто афферентный характер и выполняли функции ощущения и восприятия, в то время как вторая — эффекторная — часть целиком осуществляла движения и действия.

Современные представления о строении психических процессов исходят из модели рефлекторного кольца или сложной само регулирующейся системы, каждое звено которой включаетка) афферентные, так и эфферентные компоненты и которая в целом носит характер сложной и активной психической деятельности (А.Н.Леонтьев, 1959; и др.).

Рассмотрим это на двух примерах: восприятия и движения или действия. Сделаем это лишь в самых общих чертах, поскольку подробный анализ структуры и мозговой организации этих процессов будет представлен в последней части этой книги.

Известно, что ощущение включает в себя двигательные компоненты, и современная психология рассматривает ощущение, и тем более восприятие, как рефлекторный акт, содержащий как афферентные, так и эфферентные звенья; чтобы убедиться в сложном активном характере ощущений, достаточно напомнить, что даже у животных они включают в свой состав процесс отбора биологически значимых признаков, а человека — и активное кодирующее влияние языка.

Еще более отчетливо активный характер процессов выступает в сложном предметном восприятии. Хорошо известно, что пред­метное восприятие носит не только полирецепторпый характер, опираясь на совместную работу целой группы анализаторов, но всегда включает в свой состав активные двигательные компонен­ты. Решающую роль движений глаз в зрительном восприятии от­мечал еще И.М. Сеченов, однако доказано это было лишь в последнее время. В целом ряде психофизиологических ис­следований было показано, что неподвижный глаз практически не может воспринимать изображение, состоящее из многих ком­понентов, и что сложное предметное восприятие предполагает активные, поисковые движения глаз, выделяющие нужные при­знаки, и лишь постепенно, по мере раз­вития принимает свернутый характер.

Все эти факты убеждают нас в том, что восприятие осуществ­ляется при совместном участии всех тех функциональных блоков мозга, из которых первый обеспечивает нужный тонус коры, вто­рой осуществляет анализ и синтез поступающей информации, а третий обеспечивает направленные поисковые движения, создавая тем самым активный характер воспринимающей деятельности.

Как будет показано в следующих главах этой книги, именно такое сложное строение восприятия объясняет, почему его нару­шения могут возникать при поражении различных, далеко распо­ложенных друг от друга, мозговых аппаратов.

Аналогичное можно сказать и о построении произвольного движения и действия.

Участие эфферентных механизмов в построении движения са­моочевидно; однако еще Н.А. Бернштейн показал, что дви­жение не может управляться одними эфферентными импульсами и что для его организованного протекания необходимы постоян­ные афферентные процессы, сигнализирующие о состоянии со­членений и мышц, положении сегментов движущегося аппарата И тех пространственных координатах, в которых движение проте­кает.

Таким образом, произвольное движение, и тем более предметное действие, опирается на совместную работу самых различных отделов мозга, и если аппараты первого блока обеспечивают нуж­ный тонус мышц, без которого никакое координированное дви­жение не было бы возможным, то аппараты второго блока дают возможность осуществить те афферентные синтезы, в системе которых протекает движение, а аппараты третьего блока обеспе­чивают подчинение движения и действия соответствующим на­мерениям, создают программы выполнения двигательных актов и обеспечивают ту регуляцию и контроль протекания движешь благодаря которым сохраняется его организованный, осмысле­ний характер.


Семинарское занятие № 4

Тема «Физиология деятельности зрительного, слухового и вестибулярного анализаторов»

Вопросы для обсуждения:

1. Общие принципы строения и функции сенсорных систем.

2. Строение и функции оптического аппарата глаза. Рецепторный уровень зрительной системы.

3. Проводящие пути зрительной системы. Зрительная кора.

4. Физические и физиологические параметра звука. Механизмы восприятия звука.

5. Рецепторный уровень и проводящие пути слухового анализатора.

6. Виды слуха. Слуховая кора.

7. Вестибулярная система.

Задания:

 

По мере изучения сенсорных систем заполните таблицу «Компоненты основных сенсорных систем»:

Модальность сенсорной системы Рецептор Проводящие пути Первичные воспринимающие центры коры Вторичные воспринимающие центры коры
Зрительная        
Слуховая        
Вестибулярная        
Тактильная        
Обонятельная        
Вкусовая        
Проприоцептивная        
Висцеральная        

Литература:

1. Психофизиология. Под ред. Ю.И. Александрова. - СПб.: Питер, 2003.

2. Физиология человека: Compendium. Учебник для высших учебных заведений / Под ред. Акад РАМН Б.И.Ткаченко и проф. В.Ф.Пятина, СПб. – 1996, с. 272 – 277.

3. Смирнов В.М., Будылина С.М. Физиология сенсорных систем и высшая нервная деятельность: Учеб. пособие для студ. высш. учеб. заведений. – М.: Академия, 2003. – с. 35 – 67.

4. Хомская Е.Д. Нейропсихология. – СПб.: Питер, 2005 (смотри 8, 10 главы).

 

Материалы для подготовки к занятию

 

Физиология человека: Compendium. Учебник для высших учебных заведений / Под ред. Акад РАМН Б.И.Ткаченко и проф. В.Ф.Пятина, СПб. – 1996, 424 с.

 

Зрительная система

Зрительная система (зрительный анализатор) представляет собой сово­купность защитных, оптических, рецепторных и нервных структур, воспри­нимающих и анализирующих световые раздражители. Свет, как электромаг­нитное излучение с различными длинами волн - от коротких (красная область спектра) до длинных (синяя область спектра), характеризуется час­тотой и интенсивностью. Воспринимаемая частота (величина обратная дли­не волны) определяет окраску света. Интенсивность или яркость имеет ди­апазон от порога восприятия до болевого порога (160 дБ), т. е. порядка 1016. Через зрительную систему человек получает более 80% информации о внеш­нем мире за счет пространственной разрешающей способности (острота зрения), временной разрешающей способности (время суммации и крити­ческая частота мельканий), порога чувствительности и адаптации.

Периферический отдел зрительной системы. Глаз - сферическое образова­ние, состоящее из склеры, конъюнктивы, роговицы, радужной оболочки. Склера представляет собой соединительную ткань белого цвета, окружаю­щую глазное яблоко. Конъюнктива - прозрачная ткань, снабженная крове­носными сосудами, которая на переднем полюсе глаза соединяется с рого­вицей. Роговица является прозрачным образованием, кривизна поверхности которого определяет особенности преломления света. Роговица и конъюн­ктива покрыты тонкой пленкой слезной жидкости, секретируемой слезными железами, которые расположены в височной части глазницы, над глазным яблоком. Слезы защищают роговицу и конъюнктиву от высыхания. Позади роговицы находится пигментированная радужная оболочка. Между рогови­цей и радужной оболочкой находится передняя камера глаза, наполненная жидкостью — водянистой влагой. В центре радужной оболочки находится зрачок круглой формы, пропускающий внутрь глаза свет после его прохож­дения через роговицу.

Размер зрачка в зависимости от освещенности автоматически регулиру­ется нервными волокнами, заканчивающимися в мускулатуре радужной оболочки. Круговая мышца (сфинктер), суживающая зрачок, иннервируется парасимпатическими волокнами, а мышца, расширяющая зрачок (дилататор), иннервируется симпатическими волокнами. Изменения диаметра зрач­ка меняют интенсивность светового раздражения в 16 – 17 раз. Реакция рас­ширения зрачка до максимального диаметра длится около 5 минут, а мак­симальное уменьшение его диаметра достигается всего за 5 секунд. Следо­вательно, основная функция зрачка - это регуляция интенсивности света, который попадает на центральную часть хрусталика, где фокусировка наибо­лее точная.

Позади радужной оболочки находятся задняя камера глаза и хрусталик. Хрусталик - двояковыпуклая линза» расположен в капсуле, волокна которой соединены с ресничными мышцами и наружным сосудистым слоем сетчат­ки. Хрусталик может становиться более плоским (рассматривание далеких объектов) или более выпуклым (рассматривание близких объектов). Измене­ние кривизны хрусталика называется аккомодацией. Функция аккомодации хрусталика - проекция изображения точно на сетчатку. Внутри глаза, поза­ди хрусталика, находится стекловидное тело. Оно представляет собой колло­идный раствор гиалуроновой кислоты во внеклеточной жидкости.

Если расстояние между хрусталиком и сетчаткой больше, чем фокусное расстояние хрусталика, то возникает близорукость (миопия). Если сетчатка слишком близко к хрусталику и фокусировка хороша только при рассмат­ривании далеко расположенных предметов, возникает дальнозоркость (гиперметропия). Близорукость и дальнозоркость корректируются очками с вогнутыми и выпуклыми линзами, соответственно. Изменение лучепрелом­ления в различных диаметрах роговицы называется астигматизмом (резуль­тат неравномерной кривизны роговицы). Для его исправления более пригодны контактные линзы, которые, плавая в слезной жидкости над роговицей, компенсируют ее отклонения от правильной формы. Итак, оптическая система глаз фокусирует изображение на рецепторной поверхности сетчат­ки. Диоптрический аппарат глаза передает на сетчатку резко уменьшенное изображение предметов.

Сетчатка — это высокоорганизованная слоистая структура, объединяю­щая рецепторы и нейроны. Фоторецепторные клетки (палочки и колбочки) расположены в пигментном слое. Их светочувствительные концы поверну­ты от пучка падающего света и спрятаны в промежутках между клетками пигментного эпителия. Пигментные клетки сетчатки участвуют в метаболиз­ме фоторецепторов и синтезе зрительных пигментов. Нервные волокна, выходящие из сетчатки, лежат на пути света к ее рецепторам. В том месте, где волокна зрительного нерва выходят из сетчатки, нет фоторецепторов -это так называемое слепое пятно. В области слепого пятна всегда имеется «дефект» изображения, проецируемого на сетчатку, который компенсируют высшие зрительные центры. Поэтому слепое пятно не влияет на целост­ность зрительного восприятия.

Палочки отличаются от колбочек структурно и функционально. В палочках содержится зрительный пигмент (пурпур — родопсин), а в каждой колбочке зрительные пигменты — иодопсин, хлоролаб и эритлаб, необходимые для цветового зрения. Палочка в 500 раз более чувствительна к свету, чем кол­бочка, но она не цветочувствительна. Зрительные пигменты расположены в наружном светочувствительном сегменте палочек и колбочек. Во внутрен­нем сегменте находятся ядро и митохондрии, участвующие в энергетических процессах при действии света. В сетчатке находится около 6 млн. колбочек и 120 млн. палочек. Плотность колбочек выше в центре сетчатки и падает к периферии. В центре сетчатки имеется участок максимальной остроты зрения, называемый центральной ямкой, где находятся только колбочки (150 тысяч на 1 мм2). Палочек больше на периферии сетчатки, но острота «периферического» зрения при хорошей освещенности невелика. Колбочки функционируют при ярком свете и реагируют на цвет, палочки возбуждают­ся на действие света и обеспечивают зрительное восприятие при слабой (сумеречной) освещенности.

Первичным процессом зрительной рецепции является фотохимическая реакция. Фотоны поглощаются молекулами зрительных пигментов. Поглоще­ние молекулой пигмента одного фотона (кванта света) запускает в фоторе­цепторе многоступенчатый процесс распада молекул пигмента. При распаде родопсина в палочках, иодопсина, хлоролаба и эритлаба в колбочках образу­ется опсин и витамин А1 Фотохимические процессы в палочках и колбочках сходны, но каждый пигмент имеет свои спектры поглощения: у родопсина это 500 нм (зелено-голубая часть), иодопсина – 570 нм (желтая часть), хлоролаба – 425 нм, эритлаба – 435 нм. Восстанавливаются пигменты в темноте в результате цепи химических реакций (ресжтез), протекающих с поглощением энергии. Ретиналь ресинтезируется на основе цисизомера витамина А,. Поэтому недостаток витамина А1 в организме вызывает нару­шение сумеречного зрения. При постоянном освещении фотохимический распад пигментов уравновешивается с их ресинтезом.

На свет фоторецепторы отвечают гиперполяризацией мембраны (зритель­ный рецепторный потенциал). Амплитуда этого потенциала прямо зависит

от интенсивности света (освещенности, относительно предыдущего состоя­ния адаптации) и длины его волны.

Палочки и колбочки соединены с биполярными нейронами сетчатки, которые, в свою очередь, имеют с ганглиозными клетками синапсы, выде­ляющие ацетилхолин. Аксоны ганглиозных клеток сетчатки образуют зри­тельный нерв, который идет к различным мозговым структурам. Около 130 млн. фоторецепторов связаны (конвергируют) с 1, 3 млн. волокон зритель­ного нерва. В центральной ямке каждая колбочка связана с одной биполярной клеткой, а она, в свою очередь, - с одной ганглиозной. К периферии от центральной ямки множество палочек и колбочек конвергируют на одной биполярной клетке, а множество биполярных — на одной ганглиозной.

Распространение зрительного возбуждения внутри сетчатки ограничива­ется тормозными нейронами — это горизонтальные и амакриновые клетки, которые расположены в слое биполярных нейронов. Горизонтальные клетки обеспечивают латеральное торможение между биполярными нейронами, а амакриновые - между ганглиозными клетками.

Ганглиозные клетки при слабой освещенности дают непрерывную импульсацию. При большой освещенности одни ганглиозные клетки реагируют как детекторы яркости (усиливают активность), а другие - как детекторы темноты (ослабляют активность). Все ганглиозные клетки имеют круглые рецептивные поля. Оптимальным стимулом для ганглиозных клеток служит либо светлое пятно, окруженное темным поясом, либо темное пятно, окру­женное ярким поясом. Многие ганглиозные клетки реагируют только на изменение освещения, но не реагируют на постоянный свет.

Каждая ганглиозная клетка связана со своим рецептивным полем на ограниченном участке сетчатки и не реагирует на свет вне ее рецептивного поля. Причем один тип ганглиозных клеток возбуждается светом, попадаю­щим в центр рецептивного поля, но затормаживается, если свет попадает на его периферию, а другой тип затормаживается светом в центре рецептивного поля и возбуждается при действии света на его края. Одновременно реакция нейронов первого и второго типов лежит в основе появления одновременного контраста за счет подчеркивания края изображения их антагонистическими рецептивными полями.

Величина рецептивных полей растет от области центральной ямки к периферии сетчатки (жцентриситет). Это связано с тем, что в середине сетчатки, в области центральной ямки, одна колбочка через отдельную биполярную клетку соединяется с одной ганглиозной клеткой. На перифе­рии, где, в основном, находятся палочки, отмечаются широкие перекрыва­ющиеся рецептивные поля: множество рецепторов связано с одной гангли­озной клеткой.

Острота зрения – возможность различения двух соседних точек – мак­симальна для узких рецептивных полей центральной ямки. Слабые сигналы с периферии сетчатки также выделяются зрением, благодаря взаимодейст­вию широких перекрывающихся рецептивных полей за счет пространствен­ной суммации раздражителей.

В сетчатке есть клетки, которые наиболее эффективно реагируют на цвета-антагонисты: красный и зеленый, желтый и синий или зеленый и синий. Объясняется это явление тем, что из трех типов колбочек два всегда связаны с одной ганглиозной клеткой, часть колбочек имеет возбудительные синапсы, а часть – тормозные.

Сетчатка, по сложности организации рассматривается как часть мозга, расположенная на периферии. Здесь с фоторецепторами связано несколько слоев нейронов. Горизонтальные и биполярные клетки сетчатки не генери­руют потенциалов действия. Они имеют градуальную гиперполяризацию и деполяризацию. Потенциалы действия генерируют ганглиозные клетки, ак­соны которых образуют зрительный нерв, содержащий около 1 млн. воло­кон ганглиозных клеток сетчатки. Зрительные нервы обоих глаз перекрещи­ваются в области основания черепа, где одна половина волокон зрительно­го нерва переходит на противоположную сторону, а другая - вместе с перекрещенными аксонами второго зрительного нерва образуют зритель­ный тракт.

Нервные волокна зрительного тракта подходят к ядрам четырех структур мозга: верхние бугры четверохолмия и глазодвигательные ядра среднего мозга; латеральные коленчатые тела таламуса; супрахиазмальные ядра гипоталамуса.

В ядра верхних бугров четверохолмия и латерального коленчатого тела поступают ветви аксона одной и той же ганглиозной клетки сетчатки. Обе ветви сохраняют упорядоченную проекцию сетчатки. После переключения в переднем двухолмии сигналы поступают к ядру таламуса – подушке, а после переключения в латеральном коленчатом теле сигналы идут через зритель­ную радиацию и проецируются к клеткам первичной зрительной коры (поле 17 или стриарная кора). Проекция зоны максимальной остроты зрения сет­чатки в 35 раз больше проекции участка такого же размера на периферии сетчатки. Клетки поля 17 (стриарной коры) связаны с вторичными зритель­ными зонами (поля 18 и 19, престриарная кора). От этих зон пути возвра­щаются к подушке таламуса, куда поступает информация от верхних бугров четверохолмия.

Клетки латерального коленчатого тела имеют простые концентрические рецептивные поля. Волокна от обоих глаз распределены топографически пра­вильно и послойно, обеспечивая бинокулярное зрение. Небольшая часть кле­ток латерального коленчатого тела активируется от обоих зрительных нервов.

Нейроны зрительной коры имеют почти прямоугольные зрительные поля и функционально разделены на простые и сложные. Простые нейроны реа­гируют на световое пятно и имеют рецептивное поле, которое состоит из возбудительной и тормозной зоны. Сложные нейроны служат «детекторами» угла, наклона или движения линий в поле зрения. Наконец, кора имеет бинокулярную конвергенцию, так как в одной точке представлены симмет­ричные поля зрения – справа и слева.

Распознаванию зрительных образов способствуют движения глаз. Движе­ния глаз в одном направлении называются содружественными. При переводе взора с ближней точки ясного видения на дальнюю осуществляется дивер­гентные движения. При наклоне головы в сторону наблюдаются небольшие вращательные движения глаз.

При рассматривании предмета глаза двигаются от одной точки фиксации к другой быстрыми скачками – саккадами. Длительность саккад – от 10 до 80 мс, время периодов фиксации – 150 – 300 мс. При слежении за движущи­мися объектами возникают медленные (следящие) движения глаз.

Движения глаз управляются подкорковыми центрами ретикулярной фор­мации, верхних бугров четверохолмия и претектальной области. Все эти центры координируются сигналами из зрительной, теменной и лобной коры, которые программируют движения тела и оценивают его положения в пространстве. Тонкую регуляцию глазодвигательных функций обеспечивает мозжечок, сравнивающий тонический и фазный компоненты движения при ориентации в пространстве.

При слежении за движущимся объектом возникает оптический нистагм, состоящий из чередования саккад и медленных следящих движений. При неподвижном глазном яблоке восприятие изображения исчезает в связи с разложением пигмента и адаптацией фоторецепторов.

Координированные движения глаз обеспечивают объединение информа­ции, идущей от обоих глаз в центры мозга. Особое значение для координа­ции движений играют нейроны переднего двухолмия. Во-первых, нейроны воспринимают сигналы, поступающие от одних и тех же участков полей зрения. Во-вторых, нейроны, на которых конвергирует импульсация от ле­вого и правого глаз, являются пусковым механизмом для глазодвигательных нейронов. В коре имеются колонки, осуществляющие зрительное воспри­ятие и сенсомоторную интеграцию, поэтому на высшем уровне зрительной системы параллельно функционируют две системы анализа. Одна определя­ет место предмета в пространстве, другая описывает его признаки. Конеч­ные результаты параллельных процессов интегрируются и возникает закон­ченный зрительный образ внешнего предметного мира.

 

 

Смирнов В.М., Будылина С.М. Физиология сенсорных систем и высшая нервная деятельность: Учеб. пособие для студ. высш. учеб. заведений. – М.: Академия, 2003. – с. 35 – 67

 

Зрительный анализатор

Зрительный анализатор представляет собой совокупность струк­тур, воспринимающих световую энергию в виде электромагнитно­го излучения с длиной волны 400 – 700 нм и дискретных частиц фотонов, или квантов, и формирующих зрительные ощущения. С по­мощью глаза воспринимается 80 – 90 % всей информации об окру­жающем мире.

Рисунок: Орган зрения

 

Благодаря деятельности зрительного анализатора различают освещенность предметов, их цвет, форму, величину, направле­ние передвижения, расстояние, на которое они удалены от глаза и друг от друга. Все это позволяет оценивать пространство, ориен­тироваться в окружающем мире, выполнять различные виды це­ленаправленной деятельности.

Наряду с понятием зрительного анализатора существует поня­тие органа зрения.

Орган зрения это глаз, включающий три различных в функ­циональном отношении элемента:

1) глазное яблоко, в котором расположены световоспринимающий, светопреломляющий и светорегулирующий аппараты;

2) защитные приспособления, т. е. на­ружные оболочки глаза (склера и роговица), слезный аппарат, веки, ресницы, брови;

3) двигательный аппарат, представлен­ный тремя парами глазных мышц (наружная и внутренняя пря­мые, верхняя и нижняя прямые, верхняя и нижняя косые), кото­рые иннервируются III (глазодвигательный нерв), IV (блоковый нерв) и VI (отводящий нерв) парами черепных нервов.

Структурно-функциональная характеристика

Рецепторный (периферический) отдел зрительного анализатора (фоторецепторы) подразделяется на палочковые и колбочковые нейросенсорные клетки, наружные сегменты которых имеют со­ответственно палочковидную («палочки») и колбочковидную («колбочки») формы. У человека насчитывается 6 – 7 млн колбо­чек и 110 – 125 млн палочек.

Место выхода зрительного нерва из сетчатки не содержит фоторецепторов и называется слепым пятном. Латерально от сле­пого пятна в области центральной ямки лежит участок наилуч­шего видения — желтое пятно, содержащее преимущественно кол­бочки. К периферии сетчатки число колбочек уменьшается, а число палочек возрастает, и периферия сетчатки содержит одни лишь палочки.

Различия функций колбочек и палочек лежит в основе фено­мена двойственности зрения. Палочки являются рецепторами, вос­принимающими световые лучи в условиях слабой освещенности, т.е. бесцветное, или ахроматическое, зрение. Колбочки же функ­ционируют в условиях яркой освещенности и характеризуются разной чувствительностью к спектральным свойствам света (цвет­ное или хроматическое зрение). Фоторецепторы обладают очень высокой чувствительностью, что обусловлено особенностью стро­ения рецепторов и физико-химических процессов, лежащих в основе восприятия энергии светового стимула. Полагают, что фо­торецепторы возбуждаются при действии на них 1 – 2 квантов света.

Палочки и колбочки состоят из двух сегментов – наружного и внутреннего, которые соединяются между собой посредством уз­кой реснички. Палочки и колбочки ориентированы в сетчатке радиально, а молекулы светочувствительных белков расположены в наружных сегментах таким образом, что около 90 % их светочув­ствительных групп лежат в плоскости дисков, входящих в состав наружных сегментов. Свет оказывает наибольшее возбуждающее действие в том случае, если направление луча совпадает с длин­ной осью палочки или колбочки, при этом он направлен перпен­дикулярно дискам их наружных сегментов.

Фотохимические процессы в сетчатке глаза. В рецепторных клет­ках сетчатки находятся светочувствительные пигменты (сложные белковые вещества) – хромопротеиды, которые обесцвечивают­ся на свету. В палочках на мембране наружных сегментов содер­жится родопсин, в колбочках – йодопсин и другие пигменты.

Родопсин и йодопсин состоят из ретиналя (альдегида витами­на А1) и гликопротеида (опсина). Имея сходство в фотохимических процессах, они различаются тем, что максимум поглощения находится в различных областях спектра. Палочки, содержащие родопсин, имеют максимум поглощения в области 500 нм. Среди колбочек различают три типа, которые отличаются максимумами в спектрах поглощения: одни имеют максимум в синей части спект­ра (430 – 470 нм), другие в зеленой (500 – 530), третьи – в крас­ной (620 – 760 нм) части, что обусловлено наличием трех типов зрительных пигментов. Красный кол бочковый пигмент получил название «йодопсин». Ретиналь может находиться в различных про­странственных конфигурациях (изомерных формах), но только одна из них – 11-ЦИС-изомер ретиналя выступает в качестве хромо­форной группы всех известных зрительных пигментов. Источни­ком ретиналя в организме служат каротиноиды.

Фотохимические процессы в сетчатке протекают весьма эко­номно. Даже при действии яркого света расщепляется только не­большая часть имеющегося в палочках родопсина (около 0, 006 %).

В темноте происходит ресинтез пигментов, протекающий с по­глощением энергии. Восстановление йодопсина протекает в 530 раз быстрее, чем родопсина. Если в организме снижается содержание витамина А, то процессы ресинтеза родопсина ослабевают, что приводит к нарушению сумеречного зрения, так называемой ку­риной слепоте. При постоянном и равномерном освещении уста­навливается равновесие между скоростью распада и ресинтеза пигментов. Когда количество света, падающего на сетчатку, умень­шается, это динамическое равновесие нарушается и сдвигается в сторону более высоких концентраций пигмента. Этот фотохими­ческий феномен лежит в основе темновой адаптации.

Особое значение в фотохимических процессах имеет пигмент­ный слой сетчатки, который образован эпителием, содержащим фусцин. Этот пигмент поглощает свет, препятствуя отражению и рассеиванию его, что обусловливает четкость зрительного воспри­ятия. Отростки пигментных клеток окружают светочувствитель­ные членики палочек и колбочек, принимая участие в обмене веществ фоторецепторов и в синтезе зрительных пигментов.

Вследствие фотохимических процессов в фоторецепторах глаза при действии света возникает рецепторный потенциал, который представляет собой гиперполяризацию мембраны рецептора. Это отличительная черта зрительных рецепторов, активация других рецепторов выражается в виде деполяризации их мембраны. Амп­литуда зрительного рецепторного потенциала увеличивается при увеличении интенсивности светового стимула. Так, при действии красного цвета, длина волны которого составляет 620 – 760 нм, ре­цепторный потенциал более выражен в фоторецепторах централь­ной части сетчатки, а синего (430 – 470 нм) – в периферической.

Синаптические окончания фоторецепторов конвергируют на биполярные нейроны сетчатки. При этом фоторецепторы централь­ной ямки связаны только с одним биполяром.

Рисунок: Схема строения сетчатки

 

Проводниковый отдел. Первый нейрон проводникового отдела зрительного анализатора представлен биполярными клетками сет­чатки.

Считают, что в биполярных клетках возникают потенциалы действия подобно рецепторным и горизонтальным НС. В одних биполярах на включение и выключение света возникает медлен­ная длительная деполяризация, а в других на включение — ги­перполяризация, на выключение — деполяризация.

Аксоны биполярных клеток в свою очередь конвергируют на ган-глиозные клетки (второй нейрон). В результате на каждую ганглиозную клетку могут конвергировать около 140 палочек и 6 колбочек, при этом чем ближе к желтому пятну, тем меньше фоторецепторов конвергирует на одну клетку. В области желтого пятна конверген­ция почти не осуществляется и количество колбочек почти равно количеству биполярных и ганглиозных клеток. Именно это объяс­няет высокую остроту зрения в центральных отделах сетчатки.

Периферия сетчатки отличается большой чувствительностью к слабому свету. Это обусловлено, по-видимому, тем, что до 600 палочек конвергируют здесь через биполярные клетки на одну и ту же ганглиозную клетку. В результате сигналы от множества па­лочек суммируются и вызывают более интенсивную стимуляцию этих клеток.

[…]

Проводниковый отдел, начинающийся в сетчатке (первый ней­рон — биполярный, второй нейрон — ганглиозные клетки), ана­томически представлен далее зрительными нервами и после час­тичного перекреста их волокон — зрительными трактами. В каж­дом зрительном тракте содержатся нервные волокна, идущие от внутренней (носовой) поверхности сетчатки глаза одноименной стороны и от наружной половины сетчатки другого глаза. Волокна зрительного тракта направляются к зрительному бугру (собствен­но таламур), к метаталамусу (наружные коленчатые тела) и к яд­рам подушки. Здесь расположены третий нейрон зрительного ана­лизатора. От них зрительные нервные волокна направляются в кору полушарий большого мозга.

В наружных (или латеральных) коленчатых телах, куда прихо­дят волокна из сетчатки, есть рецептивные поля, которые также имеют округлую форму, но меньше по размеру, чем в сетчатке. Ответы нейронов здесь носят фазический характер, но более вы­ражены, чем в сетчатке. На уровне наружных коленчатых тел про­исходит процесс взаимодействия афферентных сигналов, идущих от сетчатки глаза, с эфферентными из области коркового отдела зрительного анализатора. С участием ретикулярной формации здесь происходит взаимодействие со слуховой и другими сенсорными системами, что обеспечивает процессы избирательного зритель­ного внимания путем выделения наиболее существенных компо­нентов сенсорного сигнала.

Центральный, или корковый отдел зрительного анализатора рас­положен в затылочной доле (поля 17, 18, 19 по Бродману) или VI, V2, V3 (согласно принятой номенклатуре). Считают, что первич­ная проекционная область (поле 17) осуществляет специализиро­ванную, но более сложную, чем в сетчатке и в наружных коленча­тых телах, переработку информации. Рецептивные поля нейронов зрительной коры небольших размеров имеют вытянутые, почти прямоугольные, а не округлые формы. Наряду с этим имеются слож­ные и сверхсложные рецептивные поля детекторного типа. Эта осо­бенность позволяет выделять из цельного изображения лишь от­дельные части линий с различным расположением и ориентацией, при этом проявляется способность избирательно реагировать на эти фрагменты.

В каждом участке коры сконцентрированы нейроны, которые образуют колонку, проходящую по глубине через все слои верти­кально, при этом происходит функциональное объединение ней­ронов, выполняющих сходную функцию. Разные свойства зрительных объектов (цвет, форма, движение) обрабатываются в разных частях зрительной коры большого мозга параллельно.

[…]

Механизмы, обеспечивающие ясное видение в различных условиях

При рассмотрении объектов, находящихся на разном удалении от наблюдателя, ясному видению способствуют следующие про­цессы.

1. Конвергенционные и дивергенционные движения глаз, благода­ря которым осуществляется сведение или разведение зрительных осей. Если оба глаза двигаются в одном направлении, такие дви­жения называются содружественными.

2. Реакция зрачка, которая происходит синхронно с движением глаз. Так, при конвергенции зрительных осей, когда рассматривают­ся близко расположенные предметы, происходит сужение зрачка, т. е. конвергентная реакция зрачков. Эта реакция способствует умень­шению искажения изображения, вызываемого сферической аберра­цией. Сферическая аберрация обусловлена тем, что преломляющие среды глаза имеют неодинаковое фокусное расстояние в разных уча­стках. Центральная часть, через которую проходит оптическая ось, имеет большее фокусное расстояние, чем периферическая часть. Поэтому изображение на сетчатке получается нерезким. Чем меньше диаметр зрачка, тем меньше искажения, вызываемые сферической аберрацией. Конвергентные сужения зрачка включают в действие ап­парат аккомодации, обусловливающий увеличение преломляющей силы хрусталика.

Зрачок является также аппаратом устранения хроматической аберрации, которая обусловлена тем, что оптический аппарат гла­за, как и простые линзы, преломляет свет с короткой волной сильнее, чем с длинной волной. Исходя из этого, для более точ­кой фокусировки предмета красного цвета требуется большая сте­пень аккомодации, чем для синего. Именно поэтому синие пред­меты кажутся более удаленными, чем красные, будучи располо­женными на одном и том же расстоянии.

3. Аккомодация является главным механизмом, обеспечиваю­щим ясное видение разноудаленных предметов, и сводится к фо­кусированию изображения от далеко или близко расположенных предметов на сетчатке. Основной механизм аккомодации заклю­чается в непроизвольном изменении кривизны хрусталика глаза.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-07-12; Просмотров: 1396; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.066 с.)
Главная | Случайная страница | Обратная связь