Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Средние величины в статистике



 

Большое распространение в статистике имеют средние величины. Средние величины характеризуют качественные показатели коммерческой деятельности: издержки обращения, прибыль, рентабельность и др.

Средняя - это один из распространенных приемов обобщений. Правильное понимание сущности средней определяет ее особую значимость в условиях рыночной экономики, когда средняя через единичное и случайное позволяет выявить общее и необходимое, выявить тенденцию закономерностей экономического развития.

Средняя величина - это обобщающий показатель, в котором находят выражение действия общих условий, закономерностей изучаемого явления.

Статистические средние рассчитываются на основе массовых данных правильно статистически организованного массового наблюдения (сплошного и выборочного). Однако статистическая средняя будет объективна и типична, если она рассчитывается по массовым данным для качественно однородной совокупности (массовых явлений). Например, если рассчитывать среднюю заработную плату в кооперативах и на госпредприятиях, а результат распространить на всю совокупность, то средняя фиктивна, так как рассчитана по неоднородной совокупности, и такая средняя теряет всякий смысл.

При помощи средней происходит как бы сглаживание различий в величине признака, которые возникают по тем или иным причинам у отдельных единиц наблюдения.

Например, средняя выработка продавца зависит от многих причин: квалификации, стажа, возраста, формы обслуживания, здоровья и т.д.

Средняя выработка отражает общее свойство всей совокупности.

Средняя величина является отражением значений изучаемого признака, следовательно, измеряется в той же размерности, что и этот признак.

Каждая средняя величина характеризует изучаемую совокупность по какому-либо одному признаку. Чтобы получить полное и всестороннее представление об изучаемой совокупности по ряду существенных признаков, необходимо располагать системой средних величин, которые могут описать явление с разных сторон.

Существуют различные средние:

* средняя арифметическая;

* средняя геометрическая;

* средняя гармоническая;

* средняя квадратическая;

* средняя хронологическая.

Рассмотрим некоторые виды средних, которые наиболее часто используются в статистике.

Средняя арифметическая

Средняя арифметическая простая (невзвешенная) равна сумме отдельных значений признака, деленной на число этих значений.

Отдельные значения признака называют вариантами и обозначают через х ( ); число единиц совокупности обозначают через n, среднее значение признака - через . Следовательно, средняя арифметическая простая равна:

По данным дискретного ряда распределения видно, что одни и те же значения признака (варианты) повторяются несколько раз. Так, например, варианта х встречается в совокупности 2 раза, а варианта х-16 раз и т.д.

Число одинаковых значений признака в рядах распределения называется частотой или весом и обозначается символом n.

Вычислим среднюю заработную плату одного рабочего в руб.:

Фонд заработной платы по каждой группе рабочих равен произведению варианты на частоту, а сумма этих произведений дает общий фонд заработной платы всех рабочих.

В соответствии с этим, расчеты можно представить в общем виде:

 

Полученная формула называется средней арифметической взвешенной.

Статистический материал в результате обработки может быть представлен не только в виде дискретных рядов распределения, но и в виде интервальных вариационных рядов с закрытыми или открытыми интервалами.

Исчисление средней по сгруппированным данным производится по формуле средней арифметической взвешенной.

В практике экономической статистики иногда приходится исчислять среднюю по групповым средним или по средним отдельных частей совокупности (частным средним). В таких случаях за варианты (х) принимаются групповые или частные средние, на основании которых исчисляется общая средняя как обычная средняя арифметическая взвешенная.

Средняя гармоническая

Наряду со средней арифметической, в статистике применяется средняя гармоническая величина, обратная средней арифметической из обратных значений признака. Как и средняя арифметическая, она может быть простой и взвешенной.

Характеристиками вариационных рядов, наряду со средними, являются мода и медиана.

Мода - это величина признака (варианта), наиболее часто повторяющаяся в изучаемой совокупности. Для дискретных рядов распределения модой будет значение варианта с наибольшей частотой.

Для интервальных рядов распределения с равными интервалами мода определяется по формуле:

где - начальное значение интервала, содержащего моду;

- величина модального интервала;

- частота модального интервала;

- частота интервала, предшествующего модальному;

- частота интервала, следующего за модальным.

Медиана - это варианта, расположенная в середине вариационного ряда. Если ряд распределения дискретный и имеет нечетное число членов, то медианой будет варианта, находящаяся в середине упорядоченного ряда (упорядоченный ряд - это расположение единиц совокупности в возрастающем или убывающем порядке). Медиана определяется по формуле:

,

где - нижняя граница интервала, содержащего медиану (интервал определяется по накопленной частоте, первой превышающей 50% суммы частот),

i – величина этого интервала,

- полусумма частот ряда,

- накопленная частота интервала, предшествующего медианному,

- частота медианного интервала.

Задача №1. Рабочие одного цеха предприятия распределяются следующим образом по размеру заработной платы в этом цехе:

Зарплата, тыс. руб.
Число рабочих

Определите средний стаж работы рабочих цеха.

Решение:

Найдем среднюю заработную плату рабочих по формуле средней арифметической взвешенной: , где x - величина зарплаты, n – количество работников, имеющих данную зарплату, - средняя зарплата по цеху, - количество работников цеха.

= =586/65=9, 01 (тыс. руб.)

Задача №2. Имеются данныео предприятии:

Стаж, лет До 2 2 - 4 4 - 6 6 - 8 8 - 10 10 - …
Число рабочих

Определить моду.

Решение:

Для решения применим формулу В данном случае модальным будет являться интервал от 6 до 8 (т.к. это наиболее часто повторяющийся интервал).

Значит, = 6, 77 лет

 

Задача №3. На основе данных из задачи №2 определить медиану.

Решение:

Применим формулу .

Для решения построим таблицу для вычисления накопленных частот:

Стаж, лет До 2 2 - 4 4 - 6 6 - 8 8 - 10 10 - …
Число рабочих
Накопленная частота

В данном случае медианным является интервал от 6 до 8 (так как всего рабочих 100, а пятидесятый рабочий находится в данном интервале). Следовательно, = 6, 17 лет.

Показатели вариации

 

Различие индивидуальных значений признака внутри изучаемой совокупности в статистике называется вариацией признака.

Она возникает в результате того, что его индивидуальные значения складываются под совокупным влиянием разнообразных факторов, которые по-разному сочетаются в каждом отдельном случае.

Средняя величина — это абстрактная, обобщающая характеристика признака изучаемой совокупности, но она не показывает строения совокупности, которое весьма существенно для ее познания. Средняя величина не дает представления о том, как отдельные значения изучаемого признака группируются вокруг средней, сосредоточены ли они вблизи или значительно отклоняются от нее. В некоторых случаях отдельные значения признака близко примыкают к средней арифметической и мало от нее отличаются. В таких случаях средняя хорошо представляет всю совокупность.

В других, наоборот, отдельные значения совокупности далеко отстают от средней, и средняя плохо представляет всю совокупность.

Колеблемость отдельных значений характеризуют показатели вариации.

Термин " вариация" произошел от латинского variatio –“изменение, колеблемость, различие”. Однако не всякие различия принято называть вариацией. Под вариацией в статистике понимают такие количественные изменения величины исследуемого признака в пределах однородной совокупности, которые обусловлены перекрещивающимся влиянием действия различных факторов. Различают вариацию признака: случайную и систематическую.

Анализ систематической вариации позволяет оценить степень зависимости изменений в изучаемом признаке от определяющих ее факторов. Например, изучая силу и характер вариации в выделяемой совокупности, можно оценить, насколько однородной является данная совокупность в количественном, а иногда и качественном отношении, а следовательно, насколько характерной является исчисленная средняя величина. Степень близости данных отдельных единиц к средней измеряется рядом абсолютных, средних и относительных показателей.

Для характеристики совокупностей и исчисленных величин важно знать, какая вариация изучаемого признака скрывается за средним.

Для характеристики колеблемости признака используется ряд показателей. Наиболее простой из них - размах вариации.

Размах вариации - это разность между наибольшим ( ) и наименьшим ( ) значениями вариантов.

Чтобы дать обобщающую характеристику распределению отклонений, исчисляют среднее линейное отклонение d, которое учитывает различие всех единиц изучаемой совокупности.

Среднее линейное отклонение определяется как средняя арифметическая из отклонений индивидуальных значений от средней, без учета знака этих отклонений:

Если данные наблюдения представлены в виде дискретного ряда распределения с частотами, среднее линейное отклонение исчисляется по формуле средней арифметической взвешенной:

Основными обобщающими показателями вариации в статистике являются дисперсии и среднее квадратическое отклонение.

Дисперсия - это средняя арифметическая квадратов отклонений каждого значения признака от общей средней. Дисперсия обычно называется средним квадратом отклонений и обозначается (или δ 2). В зависимости от исходных данных дисперсия может вычисляться по средней арифметической простой или взвешенной:

— дисперсия невзвешенная (простая);

— дисперсия взвешенная.

Среднее квадратическое отклонение представляет собой корень квадратный из дисперсии и обозначается S (или δ ):

— среднее квадратическое отклонение невзвешенное;

— среднее квадратическое отклонение взвешенное.

Среднее квадратическое отклонение - это обобщающая характеристика абсолютных размеров вариации признака в совокупности. Выражается оно в тех же единицах измерения, что и признак (в метрах, тоннах, процентах, гектарах и т.д.).

Среднее квадратическое отклонение является мерилом надежности средней. Чем меньше среднее квадратическое отклонение, тем лучше средняя арифметическая отражает собой всю представляемую совокупность.

Вычислению среднего квадратического отклонения предшествует расчет дисперсии.

Упрощенный расчет дисперсии взвешенной (по формуле ).

Для характеристики меры колеблемости изучаемого признака исчисляются показатели колеблемости в относительных величинах. Они позволяют сравнивать характер рассеивания в различных распределениях (различные единицы наблюдения одного и того же признака в двух совокупностях, при различных значениях средних, при сравнении разноименных совокупностей). Расчет показателей меры относительного рассеивания осуществляют как отношение абсолютного показателя рассеивания к средней арифметической, умножаемое на 100%.

1. Коэффициент осцилляции отражает относительную колеблемость крайних значений признака вокруг средней.

2. Относительное линейное отклонение характеризует долю усредненного значения абсолютных отклонений от средней величины.

 

3. Коэффициент вариации.

Учитывая, что среднеквадратическое отклонение дает обобщающую характеристику колеблемости всех вариантов совокупности, коэффициент вариации является наиболее распространенным показателем колеблемости, используемым для оценки типичности средних величин. При этом исходят из того, что если больше 40 %, то это говорит о большой колеблемости признака в изучаемой совокупности.

Общая дисперсия δ 2 измеряет вариацию признака во всей совокупности под влиянием всех факторов, обусловивших эту вариацию:

Межгрупповая дисперсия δ 2x характеризует систематическую вариацию, т. е. различия в величине изучаемого признака, возникающие под влиянием признака-фактора, положенного в основание группировки. Она рассчитывается по формуле

,

где `хi и ni — соответственно групповые средние и численности по отдельным группам.

Внутригрупповая дисперсия отражает случайную вариацию, т.е. часть вариации, происходящую под влиянием неучтенных факторов и не зависящую от признака-фактора, положенного в основание группировки. Она исчисляется следующим образом:

Средняя из внутригрупповых дисперсий

Существует закон, связывающий три вида дисперсии. Общая дисперсия равна сумме средней из внутригрупповых и межгрупповой дисперсий:

δ 2 =` δ 2i + δ 2x.

В статистическом анализе широко используется показатель, представляющий собой долю межгрупповой дисперсии в общей дисперсии. Он носит название эмпирического коэффициента детерминации

.

Этот коэффициент показывает долю (удельный вес) общей вариации изучаемого признака, обусловленную вариацией группировочного признака.

Корень квадратный из эмпирического коэффициента детерминации носит название эмпирического корреляционного отношения

Оно характеризует влияние признака, положенного в основание группировки, на вариацию результативного признака. Эмпирическое корреляционное отношение изменяется в пределах от 0 до 1. Если η = 0, то группировочный признак не оказывает влияние на результативный. Если η = 1, то результативный признак изменяется только в зависимости от признака, положенного в основание группировки, а влияние прочих факторных признаков равно нулю. Промежуточные значения оцениваются в зависимости от их близости к предельным значениям.

Задача №1. По следующим данным определить размах вариации, среднее линейное отклонение, дисперсию и среднее квадратическое отклонение.

Стоимость продукции, тыс. руб. 10 - 16 16 - 22 22 -28
Число покупателей

Решение:

1) = 28 – 10 = 18 тыс. руб.

2) = (13*10+19*15+25*5)/ (10+15+5)= 18 тыс. руб.

3) = = 3, 33 тыс. руб.

4) = = 17 тыс. руб.

5) = = = 4, 12 тыс. руб.

 

Задача №2. Для задачи №1 рассчитайте коэффициенты осцилляции, вариации и относительное линейное отклонение.

Решение:

1) = 18/ 18*100% = 100%

2) = 3, 33/ 18*100% = 18, 5%

3) = 4, 12/ 18*100% = 22, 88% (< 40%)

 

Задача №3. По правилу сложения дисперсийопределите общую дисперсию для следующих данных:

Табельный номер рабочего Произведено продукции, шт.
Дневная смена Ночная смена

Решение:

1) Для решения используем формулу δ 2 =` δ 2i + δ 2x.

2) День: = (5+8+7+4+6)/ 5 = 6 штук

Ночь: = (5+6+4+4+6) /5 = 5 штук

3) Рассчитаем групповые дисперсии:

День: = = 2 шт.

Ночь: = = 0, 8 шт.

Рассчитаем среднюю из их групповых дисперсий: = (2+0, 8)/ 2 = 1, 4 шт.

4). Найдем общую для дневной и ночной смен: общ = (6+5)/ 2 = 5, 5 шт.

5). Найдем межгрупповую дисперсию: = = 0, 25 шт.

6). Общая дисперсия равна: δ 2 = 1, 4 + 0, 25 = 1, 65 шт.

Выборочное наблюдение

Основы выборочного метода

Выборочное наблюдение – одно из наиболее современных видов статистического наблюдения. Выборочное наблюдение – это такое наблюдение, при котором обследованию подвергается часть единиц изучаемой совокупности, отобранных на основе научно разработанных принципов, обеспечивающих получение достаточного количества достоверных данных для того, чтобы охарактеризовать всю совокупность в целом.

Средние и относительные показатели, полученные на основе выборочных данных, должны достаточно полно воспроизводить или репрезентатировать соответствующие показатели совокупности в целом.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-08-24; Просмотров: 2091; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.082 с.)
Главная | Случайная страница | Обратная связь