Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Уравнение Клапейрона – Клаузиуса, применение его к однокомпонентным системам



Простейшим типом гетерогенного равновесия является равновесие чистого вещества со своим насыщенным паром, т.е. равновесие

жидкость пар твердое тело пар

Такое равновесие можно изобразить графически:

давление насыщенного пара - температура

 

 
 

 

 

 


Рис. 6.20. Зависимость давления от температуры

 

Давление насыщенного пара – это равновесное давление, которое создается при Т = const некоторым количеством вещества в закрытом сосуде, не содержащем посторонних газов.

Давления насыщенного пара при разных температурах дают кривую испарения.

Давления насыщенного пара над твердым веществом при разных температурах дают кривую возгонки (сублимации).

Верхняя точка кривой испарения – критическая точка.

Верхняя граница кривой возгонки – точка плавления.

Направление кривых испарения и возгонки определяется уравнением Клаузиуса – Клапейрона. Получим его.

Когда две фазы чистого вещества находятся в равновесии, их изобарные потенциалы

,

т.к. химический потенциал - это изобарный потенциал 1 моль вещества

, то можно записать

(6.242)

величины – также относятся к одному моль, т.е. это молярные энтропии и мольные объемы.

При равновесии , тогда

или

Отсюда , (6.243)

где DS – изменение энтропии при переходе 1 моль вещества из фазы 1 в фазу 2.

Из второго закона термодинамики известно, что для обратимых изотермических процессов

(6.244)

Подставим 6.244 в 6.243, получим уравнение Клапейрона –Клаузиуса (1850 г.)

, (6.245)

которое характеризует зависимость температуры фазового перехода от внешнего давления.

Уравнение Клапейрона – Клаузиуса описывает фазовые переходы I рода, к которым относятся переходы вещества из одного агрегатного состояния в другое, переходы из одной кристаллической модификации в другую. Среди них плавление, испарение, конденсация, возгонка,

S(ромб) S(монокл) Sn(сер) Sn(бел) С(гр) С(алм)

DH – теплота фазового перехода 1 моль вещества.

При фазовых переходах скачком изменяются молярная энтропия и молярный объем .

Рассмотрим некоторые конкретные случаи применения уравнения Клапейрона – Клаузиуса:

а) Равновесие жидкость пар, тогда ,

DH > 0, т.к. рассматривается переход жидкости в пар, энергия

поглощается

T > 0 и .

Это значит, что давление насыщенного пара растет с увеличением температуры.

Предположим, что пар подчиняется уравнению состояния идеального газа, т.е. .

И если система далека от критической температуры, то > >

(6.246)

Разделим переменные и интегрируем, предполагая, что DHисп не зависит от Т.

или (6.247)

По этому уравнению можно рассчитать давление насыщенного пара Р2, зная Р1 и DHисп . Можно также рассчитать DHисп.

а) Равновесие жидкость твердое тело

(6.248)

Разность DV мала, поэтому кривая плавления идет круто вверх.

Когда плотность твердого вещества больше плотности жидкого

DV > 0 и > 0, кривая наклонена вправо.

Когда плотность твердого вещества меньше плотности жидко-

го DV < 0, то < 0 и кривая наклонена влево.

Вода, висмут, галлий, чугун имеют кривую, наклоненную влево.

У льда с повышением давления Тплав понижается, что объясняет скользкость льда (под давлением конька образуется вода, играющая роль смазки).

К = 1 S = 1 – ф + 2 ® S = 3 – ф

При равновесии в системе не может быть больше трех фаз, иначе число степеней свободы будет отрицательным числом, что не имеет физического смысла.

Т.е. в однокомпонентной системе одновременно могут существовать максимально три фазы: например, паровая, жидкая, твердая.

Диаграмму однокомпонентной системы (H2O) можно изобразить следующим образом.

 
 

 

 


Рис. 6.21. Диаграмма состояния воды

 

В большинстве случаев за независимые переменные выбирают Р и Т.

Фазовой точкой называется точка на диаграмме, изображающая состояние одной фазы.

Совокупность фазовых точек, изображающих состояние одной фазы, называется фазовым полем

I – фазовое поле пара,

II – фазовое поле жидкости, III – твердая фаза.

Фазовые поля разделены фазовыми линиями:

ОС – соответствует равновесию двух фаз пар – жидкость,

ОА – пар – твердая фаза, ОВ – жидкость – твердая фаза.

В точке О в равновесии находятся все три фазы.

Число степеней свободы:

на фаз. поле S = 3 – 1 = 2 (два параметра можем менять),

на фаз. линии S = 3 – 2 = 1 ( один параметр можем менять),

в точке О S = 3 – 3 = 0 (параметры менять нельзя).

Если продлить ОС до Д, то ОД соответствует равновесию пар – переохлажденная жидкость.

Давление насыщенного пара над переохлажденной жидкостью больше, чем надо льдом, т.е. переохлажденная жидкость является неустойчивой (метастабильной) фазой относительно льда.

Диаграмма состояния с несколькими твердыми фазами. В однокомпонентной системе может быть только 1 паровая и 1 жидкая фаза, а твердых фаз может быть несколько. Например, сера в твердом состоянии существует в двух модификациях S(ромб) и S(монокл) с различной кристаллической решеткой, для Fe известны 4 модификации a-, b-, g- и d-, для воды известны более 5 твердых форм и т.д.

Каждая из этих модификаций выступает как отдельная самостоятельная фаза и на диаграмме ей соответствует отдельное фазовое поле.

Рассмотрим диаграмму состояния серы.

 

 

 

 


Рис. 6.22. Диаграмма состояния серы

 

В данном случае 4 фазовых поля, 6 фазовых линий и три тройных точки А, В и С.

А – Sромб Sмонокл Sпар

В – Sромб Sмонокл Sжид

С – Sмонокл Sжид Sпар

Равновесие всех четырех фаз не может быть осуществлено, т.к. число степеней свободы в этом случае S = 1 – 4 + 2 = –1, что противоречит действительности.

Энантиотропные и монотропные превращения. Многие вещества способны существовать в различных кристаллических модификациях, каждая из которых обладает определенными границами устойчивости. При этом существует некоторая температура перехода, выше которой устойчивой является одна из модификаций, а ниже – вторая.

Если превращение в точке перехода может самопроизвольно протекать как в прямом, так и в обратном направлениях, то такой переход называется энантиотропным (рис. 6.23). В этом случае между модификациями существует равновесие

М1 М2 Ж

Примером энантиотропного фазового перехода может служить процесс взаимного перехода серы ромбической и серы моноклинической. Энантиотропные превращения наблюдаются только в таких системах, в которых температура взаимного перехода (точка О) обеих полиморфных модификаций ниже температуры плавления этих модификаций (точки О3, О4 на рис. 6.23).

 
 

 


 

 

 

Рис. 6.23. Диаграмма состояния однокомпонентной системы

с энантиотропными фазовыми превращениями

 

Кривая равновесия жидкость – пар СС/ расположена выше точки О пересечения кривых АА/ и ВВ/ равновесия соответственно a- и b-полиморфных модификаций с паром. В интервале температур, соответствующих точкам А и О, более устойчива a-модификация, т.к. давление пара на участке АО ниже, чем на участке ВО. В интервале температур между точками О и О4 более устойчивой является b-модификация, которой соответствует кривая ВВ/. Между точками О4 и С/ устойчивой является жидкая фаза (кривая СС/). Участки кривых, расположенные выше кривой АОО4С/, соответствуют неустойчивым метастабильным равновесным состоянием (отрезки ВО, ОА/, СО4, О4В/). При повышении температуры выше Т0 более устойчивой будет b-модификация и a-модификация переходит в b-модификацию. При понижении температуры ниже Т0 происходит обратный переход.

Если при любых условиях одна из модификаций более устойчива, чем вторая, то возможен переход только второй модификации в первую, но не обратно.

Ж М2 ® М1,

неуст.

т.е. вторая модификация образуется из жидкости, но не из первой модификации.

Превращение модификаций, которые могут протекать только в одном направлении, называются монотропными.

В таких системах переход от модификации, устойчивой при более высоких температурах, к модификации, устойчивой при более низких температурах, невозможен. Обратный переход осуществляется и протекает тем быстрее, чем выше температура. Примерами монотропных фазовых переходов являются: превращения a-бензофенона в b-бензофенон, белого фосфора в красный, неустойчивых модификаций мышьяка и сурьмы в устойчивые модификации и др.

 
 

 

 


Рис. 6.24. Диаграмма состояния бензофенона

Рассмотрим диаграмму состояния бензофенона (С6Н5)2СО с монотропными превращения твердых фаз (рис. 6.24).

 

На этой диаграмме кривые аО, вО и КО изображают устойчивые двухфазные равновесия b - бензофенона. a - бензофенон является неустойчивой модификацией и может самопроизвольно превращаться в b-(C6Н5)2CО, тогда как обратный переход невозможен.

Линии аО и а¢ О¢ отображают равновесия кристаллических b- и a-(C6Н5)2CО с паром, они должны пересечься в точке с, т.е. при температуре более высокой, чем температуры плавления этих модификаций (точки О и О¢ ). Так как перегреть кристаллическое вещество выше его температуры плавления невозможно, то линии сО и сО¢ продолжающие линии аО и аО¢, отражают физически нереальные состояния.

Рассмотренные закономерности фазовых равновесий и фазовых переходов имеют большое значение для химиков-технологов, т.к. позволяют установить оптимальный режим протекания химических и физико-химических процессов.

 


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-08-24; Просмотров: 2299; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.081 с.)
Главная | Случайная страница | Обратная связь