Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Классическая статистика Максвела-Больцмана: подсчёт числа состояний



Существует различные функции распределения. В классической физике используется классическая статистика Максвелла-Больцмана, в которой движение частиц определяется законами Ньютона, частицы считаются различимыми.

Это распределение частиц по энергиям.

Подсчет числа состояний в статистике Ферми-Дирака. Различаем уровни энергии и различные состояния в пределах одной и той же энергии. Число различных состояний в пределах -го энергетического уровня , число этих состояний вообще различно для различных энергетических уровней. В этой модели частицы представляются шариками, которые нужно разместить по различным состояниям. Причем в модели Бозе-Эйнштейна в каждом состоянии может быть любое число шаров, а в модели Ферми-Дирака в одном состоянии может быть только один шар. Шары неразличимы между собой. Обозначим число шаров и проведем расчет числа возможных размещений шаров для модели Ферми-Дирака.

На каждом энергетическом уровне может находиться частиц, причем . Полное число частиц на всех уровнях равно . Прежде всего найдем число способов, сколькими не различимых между собой предметов могут быть размещены по местам. Ответ дается формулой, которая для рассматриваемых величин имеет вид: .

На каждом энергетическом уровне микросостояния независимы, и не играет роли, какие именно из частиц, находятся в каком именно состоянии, поэтому полное число состояний в совокупности всех энергетических уровней равно произведению числа микросостояний на каждом отдельном энергетическом уровне. - в произведении учитывает все возможные энергетические уровни.

- число микросостояний для модели Ферми-Дирака.

Удовлетворяя требование максимума числа микросостояний в равновесном состоянии, являющемся наиболее вероятным состоянием системы получаем формулу:

- распределения Ферми-Дирака, где - число частиц, приходящихся на одно квантовое состояние с энергией . Параметр . Параметр определяется нормировкой на полное число частиц, выражающей условие сохранения числа частиц: .

При очень малых значениях экспоненциальный член в знаменателе правой части должен быть значительно больше единицы. Поэтому единицей в знаменателе можно пренебречь и записать распределение в виде , где . Если теперь перейти к непрерывному спектру, то получится экспоненциальное распределение Максвелла-Больцмана.

Формулы статистики Ферми-Дирака переходят в формулы статистики Максвелла-Больцмана, когда среднее число частиц, приходящееся на одно квантовое состояние мало.

Подсчет числа состояний в распределении Бозе-Эйнштейна. В модели Бозе-Эйнштейна в каждом квантовом состоянии может находиться произвольное число неразличимых между собой частиц. Как и при выводе распределения Ферми-Дирака, используем понятия энергетических уровней и возможных состояний в пределах отдельного уровня.

При этом условии общее число различных распределений частиц по местам выражается формулой . Тогда общее число микросостояний на всех энергетических уровнях:

- число микросостояний для модели Бозе-Эйнштейна.

Рассуждая так же, как и при выводе распределения Ферми-Дирака получим формулу:

- распределения Бозе-Эйнштейна.

Эта формула переходит в распределение Максвелла-Больцмана в случае, когда среднее число частиц, приходящихся на одно квантовое состояние, достаточно мало.

Конкуренция между частицами при занятии состояний в статистике Ферми-Дирака чрезвычайно интенсивна, поскольку занятое какой-либо частицей состояние запрещено для других частиц. Можно в определенном смысле говорить, что частица, занимающая некоторое состояние, отталкивает от этого состояния другие частицы, как бы удерживает изна некотором удалении от этого состояния. Конкуренция между частицами ослабевает, когда число допустимых для них состояний много больше числа частиц.

В статистике Бозе-Эйнштейна такая конкуренция отсутствует: частица может занять некоторое состояние независимо от того. Занято ли оно другими частицами или свободно. Ясно, что если конкуренция в статистике Ферми-Дирака ослабевает, то ее результаты должны приближаться к результатам статистике Бозе-Эйнштейна. Это наблюдается при малом среднем числе частиц, приходящихся на одно квантовое состояние. В этом случае распределения Ферми-Дирака и Бозе-Эйнштейна совпадают и сводятся к распределению Максвелла-Больцмана.


 


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-08-24; Просмотров: 774; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.014 с.)
Главная | Случайная страница | Обратная связь