Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Методы проецирования: центральное и параллельное проецирование



Изображение объектов трехмерного пространства на плоскости получают методом проецирования.

Проецирование — это процесс, в результате которого получают изображения, представляющие собой проекции на плоскости.

Аппарат проецирования включает в себя изображаемые объекты — точки А, В, проецирующие лучи i и плоскость проекций П', на которой получается изображение объектов в соответствии с рисунком 1.2.

  Рисунок 1.2 Процесс проецирования заключается в проведении проецирующих лучей через заданные точки до встречи с плоскостью проекций. Точка пересечения проецирующего луча с плоскостью проекций и определяет проекцию этой точки. Так, проекцией точки А является точка А', т. е. [i ~ A; i ^ П' = А']. Проекцией точки В является точка В', хотя проекция точки В, лежащей в плоскости п', совпала с самой точкой. Чтобы получить проекцию какой-либо фигуры, необходимо построить проекции ее характерных точек и соединить их на чертеже соответствующими линиями.

 

Построить проекции предметов на чертеже можно двумя способами: центральным и параллельным.

Наименование способа проецирования Сущность способа
Центральное проецирование Все лучи, проецирующие предмет, исходят из одной точки Р, называемой центром проекций (рисунок 1.3). Полученные проекции А', В', С' называются центральными проекциями точек А, В, С.
Параллельное проецирование Все проецирующие лучи проходят параллельно наперед заданному направлению S, а значит и друг другу (рисунок 1.4). Это можно уподобить случаю центрального способа проецирования, когда центр проекций S удален в бесконечность и все проецирующие лучи становятся параллельными. При построении проекций А', В', С' этим способом они называются параллельными проекциями точек А, В, С.
Рисунок 1.3 Рисунок 1.4
     

 

Свойства проецирования

 

Проекции, полученные при центральном и параллельном проецировании, обладают рядом свойств:

1) Проекция точки есть точка. При заданном центре Р (или направлении S) проецированию любой точки А пространства соответствует иа плоскости проекций п' единственная точка А'. При этом проекция точки В, лежащей в плоскости проекций, совпадает с самой точкой в соответствии с рисунком 1.2.
2) Проекция прямой есть прямая. Проекция прямой определена, если известны проекции хотя бы двух ее точек (рисунок 1.5). Если в пространстве прямая параллельна плоскости проекции П', то ее проекция параллельна самой прямой (рисунок 1.6). При этом при центральном проецировании проекции отрезков пропорциональны самим отрезкам, а при параллельном — равны им. При параллельном проецировании сохраняется отношение величин отрезков прямой и их проекций (рисунок 1.7).

Рисунок 1.5

Рисунок 1.6 Рисунок 1.7

 

3) Проекцией плоскости является плоскость проекций. Плоскость состоит из бесконечного множества точек. При проецировании этого множества проецирующие лучи заполняют все пространство, а их точки пересечения с плоскостью проекций П' — всю плоскость проекций.
Так как положение любой плоскости в пространстве определяется тремя ее точками, не лежащими на одной прямой, то проекция трех таких точек плоскости (рисунок 1.8) устанавливает однозначное соответствие между проецирующей плоскостью и плоскостью проекций П', которое позволяет определить проекции (любой точки D или прямой этой плоскости).
Рисунок 1.8

Если плоскость параллельна плоскости проекций, то проекции ее плоских фигур при центральном проецировании подобны самим фигурам (рисунок 1.9, а), а при параллельном — равны им (рисунок 1.9, б).

Рисунок 1.9

 

1.5 Инварианты параллельного проецирования (прямоугольное проецирование)

 

Ортогональное (прямоугольное) проецирование есть частный случай проецирования параллельного, когда все проецирующие лучи перпендикулярны плоскости проекций. Ортогональным проекциям присущи все свойства параллельных проекций, но при прямоугольном проецировании проекция отрезка, если он не параллелен плоскости проекций, всегда меньше самого отрезка (рисунок 1.10). Объясняется тем, что сам отрезок в пространстве является гипотенузой прямоугольного треугольника, а его проекция — катетом: А'В' = AB cos a..

Рисунок 1.10 При прямоугольном проецировании прямой угол проецируется в натуральную величину, когда обе стороны его параллельны плоскости проекций, и тогда, когда лишь одна из его сторон параллельна плоскости проекций, а вторая сторона не перпендикулярна этой плоскости проекций.

Теорема о проецировании прямого угла. Если одна сторона прямого угла параллельна плоскости проекций, а вторая ей не перпендикулярна, то при ортогональном проецировании прямой угол проецируется на эту плоскость в прямой же угол.

Пусть дан прямой угол ABC, у которого сторона АВ параллельна плоскости П' (рисунок 1.11). Проецирующая плоскость перпендикулярна плоскости П'. Значит, АВ _|_S, так как АВ _|_ ВС и АВ _|_ ВВ, отсюда АВ _|_ В'С'. Но так как АВ || А'В' _|_ В'С', т. е. на плоскости П' угол между А'В' и В'С равен 90°.
Рисунок 1.11

Обратимость чертежа. Проецирование на одну плоскость проекций дает изображение, которое не позволяет однозначно определить форму и размеры изображенного предмета. Проекция А (рисунок 1.8) не определяет положение самой точки в пространстве, так как не известно, на какое расстояние она удалена от плоскости проекций п'. Любая точка проецирующего луча, проходящего через точку А, будет иметь своей проекцией точку А'. Наличие одной проекции создает неопределенность изображения. В таких случаях говорят о необратимости чертежа, так как по такому чертежу невозможно воспроизвести оригинал. Для исключения неопределенности изображение дополняют необходимыми данными. В практике применяют различные способы дополнения однопроекционного чертежа. В данном курсе будут рассмотрены чертежи, получаемые ортогональным проецированием на две или более взаимно перпендикулярные плоскости проекций (комплексные чертежи) и путем перепроецирования вспомогательной проекции предмета на основную аксонометрическую плоскость проекций (аксонометрические чертежи).

Рисунок 1.12
Внимание, вопрос!     Подумайте, проанализируйте предложенные чертежи и докажите справедливость перечисленных инвариантов центрального и параллельного проецирования (рисунок 1.12).
Запомните! 1 Рассмотренные свойства (инварианты) параллельного проецирования сохраняются при любом направлении проецирования. 2 Метрические характеристики геометрических фигур при параллельном проецировании в общем случае не сохраняются (происходит искажение линейных и угловых величин).

Контрольные вопросы

1 Какие геометрические элементы включают в себя аппарат проецирования?

2 Какие способы проецирования вы знаете?

3 Какие проецирующие поверхности могут создавать проецирующие лучи?

4 Перечислите основные свойства проекций.

5 Чему равна проекция угла, плоскость которого параллельна плоскости проекций при центральном проецировании?

6 В какие геометрические образы вырождаются проекции прямых и плоскостей поверхностей, занимающих проецирующее положение?

7 Как читается теорема о проецировании прямого угла?

8 Как вы понимаете термин «обратимый чертеж? Чем достигается обратимость чертежа?
ЛЕКЦИЯ №2


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-05-30; Просмотров: 6840; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.016 с.)
Главная | Случайная страница | Обратная связь