Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Момент импульса частицы. Понятие момента инерции
Попробуем убедиться в этом. Пусть частица массы m, обладающая импульсом , движется по окружности радиуса (рис. 3.1.). Естественно назвать моментом импульса частицы (по аналогии с моментом импульса силы) векторную величину , определяемую векторным произведением величин: , (3.1) здесь – радиус-вектор, проведённый из точки 0 в ту точку пространства, в которой находится частица, обладающая импульсом . В каждый момент времени момент импульса перпендикулярен плоскости, образованной векторами и (рис. 3.1.). Поскольку траектория частицы – кривая, расположенная в плоскости, то, поместив начало отсчёта в этой плоскости, получим, что вектор при любых значениях t перпендикулярен плоскости движения. Это естественно наводит на мысль, имеется выделенная ось, связанная с движением. Вектор называют также орбитальным моментом, подчёркивая тот факт, что новая величина, как и импульс частицы , характеризует движение частицы по траектории; орбите. Следует заметить, для свободной частицы момент импульса не является самостоятельной характеристикой, поскольку его сохранение следует непосредственно из закона сохранения импульса. Убедимся в этом. Для этого продифференцируем выражение (3.1); (зачем нужна такая математическая операция? ) В результате дифференцирования получаем выражение вида: . Здесь второе слагаемое правой части равно нулю; действительно, производная от постоянной величины равна нулю, а её умножение на немедленно даёт нуль. Первое слагаемое так же ведёт к нулевому результату; поскольку производная от радиус-вектора является скоростью , то умножение скорости на импульс также немедленно даёт нуль. Почему? Уточните понятие векторное произведение: направление векторов , совпадает, естественно, угол между векторами равен нулю, а sin 0о равен чему? Таким образом, для свободной частицы = const. Однако специфический характер рассматриваемой величины отчётливо проявляется лишь для системы частиц. Равномерное движение по окружности (рис. 3.1.) представляет собой движение в плоскости. Однако в работе [3, с. 13] мы показали, несмотря на то, что движение плоское, его можно трактовать как одномерное движение с характеристиками состояния частицы – угол поворота и угловая скорость . Тогда из уравнения (3.1) следует: . Поскольку здесь sina равен единице (почему? ) (рис. 3.1.), а при движении по окружности , в итоге получаем: . (3.2) Из приведённых рассуждений следует: при равномерном движении по окружности, w = const, момент импульса частицы сохраняется по модулю, L = const, и имеет всего одну отличную от нуля компоненту. Направление вектора может быть определено по правилу буравчика (уточнили его? ). В аналитическом выражении (3.2) масса m – внутренне присущее частице число (см. с. 17), а R – радиус её удалённости от выделенной оси движения. Естественно ожидать, что произведение отражает некое свойство частицы к движению её по окружности. Чтобы понять физический смысл этой величины, сопоставим аналитическую запись уравнений для импульса и момента импульса, соответственно, при поступательном и вращательном движении частицы. Известно, при поступательном движении импульс частицы , а момент импульса её при вращательном движении может быть представлен аналитически как , если символом J обозначить произведение массы частицы m на квадрат расстояния R её удалённости от выделенной оси вращения: J = . Нетрудно видеть, между ними существует тесная аналогия. В частности, масса m отражает инертные свойства частицы при поступательном движении, тогда как J является мерой инертных свойств частицы при её движении по окружности; при вращательном движении. Поэтому физическую величину J = принято называть моментом инерции частицы относительно оси в заданной инерциальной системе отсчёта. Таким образом, при движении по окружности более удобными характеристиками состояния частицы служат угол поворота , угловая скорость w и момент импульса частицы . Итак, мы убедились в том, что при наличии выделенной оси или центра вращения характеристиками состояния частицы целесообразно выбирать такие величины, которые явно учитывают наличие элементов симметрии. В заключение параграфа сравним теперь в качестве характеристик состояния частицы угловую скорость w и момент импульса . Они отличаются друг от друга по тем же параметрам, что и – скорость , и импульс (см. с. 16). Действительно, угловая скорость w, равно как и линейная скорость , не является аддитивной (складывающейся) величиной и не сохраняется для изолированной системы. Естественно, использование момента импульса как характеристики состояния частицы при вращательном движении предпочтительнее.
Популярное:
|
Последнее изменение этой страницы: 2017-03-11; Просмотров: 813; Нарушение авторского права страницы