Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Геометрический способ сложения сил.



Решение многих задач механики связано с известной из векторной алгебры операцией сложения векторов и, в частности, сил. Величину, равную геометрической сумме сил какой-нибудь системы, будем называть главным вектором этой системы сил. Понятие о геометрической сумме сил не следует смешивать с понятием о равнодействующей, для многих систем сил, как мы увидим в дальнейшем, равнодействующей вообще не существует, геометрическую же сумму (главный вектор) можно вычислить для любой системы сил.

Геометрическая сумма (главный вектор) любой системы сил определяется или последовательным сло­жением сил системы по правилу параллелограмма, или построением силового многоугольника. Второй способ является более простым и удобным. Для нахождения этим способом суммы сил , , …, (рис. 14, a), откладываем от произвольной точки О (рис. 14, б) век­тор Oa, изображающий в выбранном масштабе cилу F1, от точки a откладываем вектор , изображающий силу F2, от точки b откла­дываем вектор bc, изображающий силу F3 и т. д.; от конца m пред­последнего вектора откладываем вектор mn, изображающий силуFn.Соединяя начало первого вектора с концом последнего, получаем вектор = , изображающий геометрическую сумму или главный вектор слагаемых сил:

или

От порядка, в котором будут откладываться векторы сил, модуль и направление не зависят. Легко видеть, что проделанное по­строение представляет собою результат последовательного приме­нения правила силового тре­угольника.

Рис.14

Фигура, построенная на рис. 14, б, называется силовым (в общем случае векторным) многоугольником. Таким обра­зом, геометрическая сумма или главный вектор несколь­ких сил изображается замы­кающей стороной силового многоугольника, построенно­го из этих сил (правило сило­вого многоугольника). При построении векторного многоугольника следует помнить, что у всех слагаемых векторов стрелки должны быть направлены в одну сторону (по обводу многоугольника), а у вектора - в сторону противоположную.

Равнодействующая сходящихся сил. При изучении статики мы будем последовательно переходить от рассмотрения более простых систем сил к более сложным. Начнем с рассмотрения си­стемы сходящихся сил. Сходящимися называются силы, линии дей­ствия которых пересекаются в одной точке (см. рис. 14, а).

По следствию из первых двух аксиом статики система сходящихся сил, действующих на абсолютно твердое тело, эквивалентна системе сил, приложенных в одной точке (на рис. 14, а в точке А).

Последовательно применяя аксиому параллелограмма сил, прихо­дим к выводу, что система сходящихся сил имеет равнодей­ствующую, равную геометрической сумме (главному вектору) этих сил и приложенную в точке их пересечения. Следовательно, если силы , , …, сходятся в точке A (рис. 14, а), то сила, равная главному вектору , найденному построением силового мно­гоугольника, и приложенная в точке А, будет равнодействующей этой системы сил.

2 вопрос - Способы задания закона движения.

1) Векторный способ: Положение тела задается при помощи радиус-вектора. В таком случае закон движения имеет вид: .

2) Координатный способ: Положение тела задается в декартовой системе координат. В таком случае закон движения имеет вид: x=f1(t), y=f2(t), z=f3(t).

3) Естественный способ: Положение тела задается с помощью его траектории движения. (Для задания положения вводится естественная ось координат S (криволинейная) совпадающая с траекторией, выбираем направление оси и начало отсчета O’, тогда значение естественной координаты S равно длине дуги от начала отсчета до материальной точки, взятой с соответствующим знаком: S=± ). В таком случае закон движения имеет вид: S=f(t).

 

Движение точки можно изучать, используя любую систему координат. Рассмотрим три способа задания движения: векторный, координатный и естественный.

 

Векторный способ.

Будем рассматривать случай декартовой прямоугольной системы координат. Движение точки относительно рассматриваемой системы отсчета задано, если известен радиус-вектор этой точки как функция времени, т.е.

(1-1)

Векторный способ обычно применяется для теоретического изложения кинематики точки.

Координатный способ.


Поделиться:



Популярное:

Последнее изменение этой страницы: 2016-08-31; Просмотров: 659; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.075 с.)
Главная | Случайная страница | Обратная связь